Abstract
In this paper we present a mathematical model of mutation and selection that allows for the coexistence of multiple alleles at a locus with very small selective differences between alleles. The model also allows for the determination of fitness by multiple loci. Models of this sort are biologically plausible. However, some previous attempts to construct similar models have assumed that all mutations produce a decrease in fitness, and this has led to a tendency for the average fitness of population members to decline when population numbers are finite. In our model we incorporate some of the ideas of R. A. FISHER, so that both deleterious and beneficial mutations are possible. As a result, average fitness tends to approach a stationary distribution. We have used computer simulation methods to apply the Fisherian mutation model to the problem of the evolution of sex and recombination. The results suggest that sex and recombination can provide very large benefits in terms of average fitness. The results also suggest that obligately sexual species will win ecological competitions with species that produce a substantial fraction of their offspring asexually, so long as the number of sites under selection within the genomes of the competing species is not too small and the population sizes are not too large. Our model focuses on fertility selection in an hermaphroditic plant. However, the results are likely to generalize to a wide variety of other situations as well.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antequera F., Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11995–11999. doi: 10.1073/pnas.90.24.11995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton N. H. The maintenance of polygenic variation through a balance between mutation and stabilizing selection. Genet Res. 1986 Jun;47(3):209–216. doi: 10.1017/s0016672300023156. [DOI] [PubMed] [Google Scholar]
- Butcher D. Muller's ratchet, epistasis and mutation effects. Genetics. 1995 Sep;141(1):431–437. doi: 10.1093/genetics/141.1.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caballero A. Developments in the prediction of effective population size. Heredity (Edinb) 1994 Dec;73(Pt 6):657–679. doi: 10.1038/hdy.1994.174. [DOI] [PubMed] [Google Scholar]
- Crow J. F. Minor viability mutants in Drosophila. Genetics. 1979 May;92(1 Pt 1 Suppl):s165–s172. [PubMed] [Google Scholar]
- Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felsenstein J. The evolutionary advantage of recombination. Genetics. 1974 Oct;78(2):737–756. doi: 10.1093/genetics/78.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haigh J. The accumulation of deleterious genes in a population--Muller's Ratchet. Theor Popul Biol. 1978 Oct;14(2):251–267. doi: 10.1016/0040-5809(78)90027-8. [DOI] [PubMed] [Google Scholar]
- Hamilton W. D., Axelrod R., Tanese R. Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci U S A. 1990 May;87(9):3566–3573. doi: 10.1073/pnas.87.9.3566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
- Keightley P. D., Hill W. G. Directional selection and variation in finite populations. Genetics. 1987 Nov;117(3):573–582. doi: 10.1093/genetics/117.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kibota T. T., Lynch M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature. 1996 Jun 20;381(6584):694–696. doi: 10.1038/381694a0. [DOI] [PubMed] [Google Scholar]
- Kimura M., Maruyama T. The mutational load with epistatic gene interactions in fitness. Genetics. 1966 Dec;54(6):1337–1351. doi: 10.1093/genetics/54.6.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Ohta T. Genetic loads at a polymorphic locus which is maintained by frequency-dependent selection. Genet Res. 1970 Oct 2;16(2):145–150. doi: 10.1017/s0016672300002378. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Muller's ratchet under epistatic selection. Genetics. 1994 Apr;136(4):1469–1473. doi: 10.1093/genetics/136.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUKAI T. THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. Genetics. 1964 Jul;50:1–19. doi: 10.1093/genetics/50.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MULLER H. J. THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. Mutat Res. 1964 May;106:2–9. doi: 10.1016/0027-5107(64)90047-8. [DOI] [PubMed] [Google Scholar]
- Nei M., Murata M. Effective population size when fertility is inherited. Genet Res. 1966 Oct;8(2):257–260. doi: 10.1017/s0016672300010119. [DOI] [PubMed] [Google Scholar]
- Nowak R. Mining treasures from 'junk DNA'. Science. 1994 Feb 4;263(5147):608–610. doi: 10.1126/science.7508142. [DOI] [PubMed] [Google Scholar]
- Ohta T., Tachida H. Theoretical study of near neutrality. I. Heterozygosity and rate of mutant substitution. Genetics. 1990 Sep;126(1):219–229. doi: 10.1093/genetics/126.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pamilo P., Nei M., Li W. H. Accumulation of mutations in sexual and asexual populations. Genet Res. 1987 Apr;49(2):135–146. doi: 10.1017/s0016672300026938. [DOI] [PubMed] [Google Scholar]
- Peck J. R. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics. 1994 Jun;137(2):597–606. doi: 10.1093/genetics/137.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose M. R. The contagion mechanism for the origin of sex. J Theor Biol. 1983 Mar 7;101(1):137–146. doi: 10.1016/0022-5193(83)90277-1. [DOI] [PubMed] [Google Scholar]
- SUOMALAINEN E. Pathenogenesis in animals. Adv Genet. 1950;3:193–253. [PubMed] [Google Scholar]
- Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
- Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
- Turelli M. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Popul Biol. 1984 Apr;25(2):138–193. doi: 10.1016/0040-5809(84)90017-0. [DOI] [PubMed] [Google Scholar]
- Zeng Z. B., Cockerham C. C. Mutation models and quantitative genetic variation. Genetics. 1993 Mar;133(3):729–736. doi: 10.1093/genetics/133.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]