Abstract
With increasing popularity of QTL mapping in economically important animals and experimental species, the need for statistical methodology for fine-scale QTL mapping becomes increasingly urgent. The ability to disentangle several linked QTL depends on the number of recombination events. An obvious approach to increase the recombination events is to increase sample size, but this approach is often constrained by resources. Moreover, increasing the sample size beyond a certain point will not further reduce the length of confidence interval for QTL map locations. The alternative approach is to use historical recombinations. We use analytical methods to examine the properties of fine QTL mapping using historical recombinations that are accumulated through repeated intercrossing from an F(2) population. We demonstrate that, using the historical recombinations, both simple and multiple regression models can reduce significantly the lengths of support intervals for estimated QTL map locations and the variances of estimated QTL map locations. We also demonstrate that, while the simple regression model using historical recombinations does not reduce the variances of the estimated additive and dominant effects, the multiple regression model does. We further determine the power and threshold values for both the simple and multiple regression models. In addition, we calculate the Kullback-Leibler distance and Fisher information for the simple regression model, in the hope to further understand the advantages and disadvantages of using historical recombinations relative to F(2) data.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bodmer W. F. Human genetics: the molecular challenge. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):1–13. doi: 10.1101/sqb.1986.051.01.003. [DOI] [PubMed] [Google Scholar]
- Churchill G. A., Giovannoni J. J., Tanksley S. D. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):16–20. doi: 10.1073/pnas.90.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darvasi A., Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics. 1995 Nov;141(3):1199–1207. doi: 10.1093/genetics/141.3.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies J. L., Kawaguchi Y., Bennett S. T., Copeman J. B., Cordell H. J., Pritchard L. E., Reed P. W., Gough S. C., Jenkins S. C., Palmer S. M. A genome-wide search for human type 1 diabetes susceptibility genes. Nature. 1994 Sep 8;371(6493):130–136. doi: 10.1038/371130a0. [DOI] [PubMed] [Google Scholar]
- Dietrich W. F., Miller J., Steen R., Merchant M. A., Damron-Boles D., Husain Z., Dredge R., Daly M. J., Ingalls K. A., O'Connor T. J. A comprehensive genetic map of the mouse genome. Nature. 1996 Mar 14;380(6570):149–152. doi: 10.1038/380149a0. [DOI] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A., Elsen J. M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. doi: 10.1093/genetics/136.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hästbacka J., de la Chapelle A., Mahtani M. M., Clines G., Reeve-Daly M. P., Daly M., Hamilton B. A., Kusumi K., Trivedi B., Weaver A. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell. 1994 Sep 23;78(6):1073–1087. doi: 10.1016/0092-8674(94)90281-x. [DOI] [PubMed] [Google Scholar]
- Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings H S. The Numerical Results of Diverse Systems of Breeding, with Respect to Two Pairs of Characters, Linked or Independent, with Special Relation to the Effects of Linkage. Genetics. 1917 Mar;2(2):97–154. doi: 10.1093/genetics/2.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knott S. A., Haley C. S. Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics. 1992 Dec;132(4):1211–1222. doi: 10.1093/genetics/132.4.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kong A., Wright F. Asymptotic theory for gene mapping. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9705–9709. doi: 10.1073/pnas.91.21.9705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange K., Kunkel L., Aldridge J., Latt S. A. Accurate and superaccurate gene mapping. Am J Hum Genet. 1985 Sep;37(5):853–867. [PMC free article] [PubMed] [Google Scholar]
- Paterson A. H., DeVerna J. W., Lanini B., Tanksley S. D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics. 1990 Mar;124(3):735–742. doi: 10.1093/genetics/124.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Risch N., Ghosh S., Todd J. A. Statistical evaluation of multiple-locus linkage data in experimental species and its relevance to human studies: application to nonobese diabetic (NOD) mouse and human insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993 Sep;53(3):702–714. [PMC free article] [PubMed] [Google Scholar]
- Robbins R B. Some Applications of Mathematics to Breeding Problems III. Genetics. 1918 Jul;3(4):375–389. doi: 10.1093/genetics/3.4.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todd J. A., Mijovic C., Fletcher J., Jenkins D., Bradwell A. R., Barnett A. H. Identification of susceptibility loci for insulin-dependent diabetes mellitus by trans-racial gene mapping. Nature. 1989 Apr 13;338(6216):587–589. doi: 10.1038/338587a0. [DOI] [PubMed] [Google Scholar]
- Weller J. I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics. 1986 Sep;42(3):627–640. [PubMed] [Google Scholar]
- Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]