Skip to main content
Genetics logoLink to Genetics
. 1997 May;146(1):9–26. doi: 10.1093/genetics/146.1.9

Genetic Recombination through Double-Strand Break Repair: Shift from Two-Progeny Mode to One-Progeny Mode by Heterologous Inserts

N K Takahashi 1, K Sakagami 1, K Kusano 1, K Yamamoto 1, H Yoshikura 1, I Kobayashi 1
PMCID: PMC1207964  PMID: 9135997

Abstract

Double-strand break repair models of genetic recombination propose that a double-strand break is introduced into an otherwise intact DNA and that the break is then repaired by copying a homologous DNA segment. Evidence for these models has been found among lambdoid phages and during yeast meiosis. In an earlier report, we demonstrated such repair of a preformed double-strand break by the Escherichia coli RecE pathway. Here, our experiments with plasmids demonstrate that such reciprocal or conservative recombination (two parental DNAs resulting in two progeny DNAs) is frequent at a double-strand break even when there exists the alternative route of nonreciprocal or nonconservative recombination (two parental DNAs resulting in only one progeny DNA). The presence of a long heterologous DNA at the double-strand break, however, resulted in a shift from the conservative (two-progeny) mode to the nonconservative (one-progeny) mode. The product is a DNA free from the heterologous insert containing recombinant flanking sequences. The potential ability of the homology-dependent double-strand break repair reaction to detect and eliminate heterologous inserts may have contributed to the evolution of homologous recombination, meiosis and sexual reproduction.

Full Text

The Full Text of this article is available as a PDF (8.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belfort M., Reaban M. E., Coetzee T., Dalgaard J. Z. Prokaryotic introns and inteins: a panoply of form and function. J Bacteriol. 1995 Jul;177(14):3897–3903. doi: 10.1128/jb.177.14.3897-3903.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein H., Hopf F. A., Michod R. E. The molecular basis of the evolution of sex. Adv Genet. 1987;24:323–370. doi: 10.1016/s0065-2660(08)60012-7. [DOI] [PubMed] [Google Scholar]
  3. Brown J. R., Doolittle W. F. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2441–2445. doi: 10.1073/pnas.92.7.2441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell A. Comparative molecular biology of lambdoid phages. Annu Rev Microbiol. 1994;48:193–222. doi: 10.1146/annurev.mi.48.100194.001205. [DOI] [PubMed] [Google Scholar]
  5. Cao L., Alani E., Kleckner N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 1990 Jun 15;61(6):1089–1101. doi: 10.1016/0092-8674(90)90072-m. [DOI] [PubMed] [Google Scholar]
  6. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feiss M., Kobayashi I., Widner W. Separate sites for binding and nicking of bacteriophage lambda DNA by terminase. Proc Natl Acad Sci U S A. 1983 Feb;80(4):955–959. doi: 10.1073/pnas.80.4.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fishman-Lobell J., Haber J. E. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science. 1992 Oct 16;258(5081):480–484. doi: 10.1126/science.1411547. [DOI] [PubMed] [Google Scholar]
  9. Fujita A., Sakagami K., Kanegae Y., Saito I., Kobayashi I. Gene targeting with a replication-defective adenovirus vector. J Virol. 1995 Oct;69(10):6180–6190. doi: 10.1128/jvi.69.10.6180-6190.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gillen J. R., Willis D. K., Clark A. J. Genetic analysis of the RecE pathway of genetic recombination in Escherichia coli K-12. J Bacteriol. 1981 Jan;145(1):521–532. doi: 10.1128/jb.145.1.521-532.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Golding G. B., Gupta R. S. Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol. 1995 Jan;12(1):1–6. doi: 10.1093/oxfordjournals.molbev.a040178. [DOI] [PubMed] [Google Scholar]
  12. Hagemann A. T., Craig N. L. Tn7 transposition creates a hotspot for homologous recombination at the transposon donor site. Genetics. 1993 Jan;133(1):9–16. doi: 10.1093/genetics/133.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haig D., Grafen A. Genetic scrambling as a defence against meiotic drive. J Theor Biol. 1991 Dec 21;153(4):531–558. doi: 10.1016/s0022-5193(05)80155-9. [DOI] [PubMed] [Google Scholar]
  14. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  15. Haniford D., Kleckner N. Tn 10 transposition in vivo: temporal separation of cleavages at the two transposon ends and roles of terminal basepairs subsequent to interaction of ends. EMBO J. 1994 Jul 15;13(14):3401–3411. doi: 10.1002/j.1460-2075.1994.tb06643.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holliday R. Gene conversion: a possible mechanism for eliminating selfish DNA. Basic Life Sci. 1982;20:259–264. doi: 10.1007/978-1-4613-3476-7_17. [DOI] [PubMed] [Google Scholar]
  17. Kinsey J. A., Garrett-Engele P. W., Cambareri E. B., Selker E. U. The Neurospora transposon Tad is sensitive to repeat-induced point mutation (RIP). Genetics. 1994 Nov;138(3):657–664. doi: 10.1093/genetics/138.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kobayashi I. Mechanisms for gene conversion and homologous recombination: the double-strand break repair model and the successive half crossing-over model. Adv Biophys. 1992;28:81–133. doi: 10.1016/0065-227x(92)90023-k. [DOI] [PubMed] [Google Scholar]
  19. Kobayashi I., Takahashi N. Double-stranded gap repair of DNA by gene conversion in Escherichia coli. Genetics. 1988 Aug;119(4):751–757. doi: 10.1093/genetics/119.4.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kobayashi I. [Homologous interaction: mechanisms, roles and origins]. Tanpakushitsu Kakusan Koso. 1994 Mar;39(4):579–588. [PubMed] [Google Scholar]
  21. Kolodner R., Hall S. D., Luisi-DeLuca C. Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol Microbiol. 1994 Jan;11(1):23–30. doi: 10.1111/j.1365-2958.1994.tb00286.x. [DOI] [PubMed] [Google Scholar]
  22. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kunes S., Botstein D., Fox M. S. Synapsis-mediated fusion of free DNA ends forms inverted dimer plasmids in yeast. Genetics. 1990 Jan;124(1):67–80. doi: 10.1093/genetics/124.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kusano K., Naito T., Handa N., Kobayashi I. Restriction-modification systems as genomic parasites in competition for specific sequences. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11095–11099. doi: 10.1073/pnas.92.24.11095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kusano K., Takahashi N. K., Yoshikura H., Kobayashi I. Involvement of RecE exonuclease and RecT annealing protein in DNA double-strand break repair by homologous recombination. Gene. 1994 Jan 28;138(1-2):17–25. doi: 10.1016/0378-1119(94)90778-1. [DOI] [PubMed] [Google Scholar]
  26. Lichten M., Goldman A. S. Meiotic recombination hotspots. Annu Rev Genet. 1995;29:423–444. doi: 10.1146/annurev.ge.29.120195.002231. [DOI] [PubMed] [Google Scholar]
  27. Lichtenstein C., Brenner S. Unique insertion site of Tn7 in the E. coli chromosome. Nature. 1982 Jun 17;297(5867):601–603. doi: 10.1038/297601a0. [DOI] [PubMed] [Google Scholar]
  28. Lloyd R. G., Buckman C. Identification and genetic analysis of sbcC mutations in commonly used recBC sbcB strains of Escherichia coli K-12. J Bacteriol. 1985 Nov;164(2):836–844. doi: 10.1128/jb.164.2.836-844.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Luisi-DeLuca C., Kolodner R. D. Effect of terminal non-homology on intramolecular recombination of linear plasmid substrates in Escherichia coli. J Mol Biol. 1992 Sep 5;227(1):72–80. doi: 10.1016/0022-2836(92)90682-a. [DOI] [PubMed] [Google Scholar]
  30. Muniyappa K., Radding C. M. The homologous recombination system of phage lambda. Pairing activities of beta protein. J Biol Chem. 1986 Jun 5;261(16):7472–7478. [PubMed] [Google Scholar]
  31. Myers R. S., Stahl F. W. Chi and the RecBC D enzyme of Escherichia coli. Annu Rev Genet. 1994;28:49–70. doi: 10.1146/annurev.ge.28.120194.000405. [DOI] [PubMed] [Google Scholar]
  32. Naito T., Kusano K., Kobayashi I. Selfish behavior of restriction-modification systems. Science. 1995 Feb 10;267(5199):897–899. doi: 10.1126/science.7846533. [DOI] [PubMed] [Google Scholar]
  33. Poteete A. R., Fenton A. C. Efficient double-strand break-stimulated recombination promoted by the general recombination systems of phages lambda and P22. Genetics. 1993 Aug;134(4):1013–1021. doi: 10.1093/genetics/134.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Resnick M. A. The repair of double-strand breaks in DNA; a model involving recombination. J Theor Biol. 1976 Jun;59(1):97–106. doi: 10.1016/s0022-5193(76)80025-2. [DOI] [PubMed] [Google Scholar]
  35. Rose R. E. The nucleotide sequence of pACYC184. Nucleic Acids Res. 1988 Jan 11;16(1):355–355. doi: 10.1093/nar/16.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rosenberg S. M., Hastings P. J. The split-end model for homologous recombination at double-strand breaks and at Chi. Biochimie. 1991 Apr;73(4):385–397. doi: 10.1016/0300-9084(91)90105-a. [DOI] [PubMed] [Google Scholar]
  37. Rossignol J. L., Faugeron G. Gene inactivation triggered by recognition between DNA repeats. Experientia. 1994 Mar 15;50(3):307–317. doi: 10.1007/BF01924014. [DOI] [PubMed] [Google Scholar]
  38. Sakagami K., Tokinaga Y., Yoshikura H., Kobayashi I. Homology-associated nonhomologous recombination in mammalian gene targeting. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8527–8531. doi: 10.1073/pnas.91.18.8527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Selker E. U. Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet. 1990;24:579–613. doi: 10.1146/annurev.ge.24.120190.003051. [DOI] [PubMed] [Google Scholar]
  40. Silberstein Z., Tzfati Y., Cohen A. Primary products of break-induced recombination by Escherichia coli RecE pathway. J Bacteriol. 1995 Apr;177(7):1692–1698. doi: 10.1128/jb.177.7.1692-1698.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Simmon V. F., Lederberg S. Degradation of bacteriophage lambda deoxyribonucleic acid after restriction by Escherichia coli K-12. J Bacteriol. 1972 Oct;112(1):161–169. doi: 10.1128/jb.112.1.161-169.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stahl F. W., Kobayashi I., Stahl M. M. In phage lambda, cos is a recombinator in the red pathway. J Mol Biol. 1985 Jan 20;181(2):199–209. doi: 10.1016/0022-2836(85)90085-3. [DOI] [PubMed] [Google Scholar]
  43. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  44. Takahashi N. K., Kusano K., Yokochi T., Kitamura Y., Yoshikura H., Kobayashi I. Genetic analysis of double-strand break repair in Escherichia coli. J Bacteriol. 1993 Aug;175(16):5176–5185. doi: 10.1128/jb.175.16.5176-5185.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Takahashi N. K., Yamamoto K., Kitamura Y., Luo S. Q., Yoshikura H., Kobayashi I. Nonconservative recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5912–5916. doi: 10.1073/pnas.89.13.5912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Takahashi N., Kobayashi I. Evidence for the double-strand break repair model of bacteriophage lambda recombination. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2790–2794. doi: 10.1073/pnas.87.7.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Thaler D. S., Stahl M. M., Stahl F. W. Double-chain-cut sites are recombination hotspots in the Red pathway of phage lambda. J Mol Biol. 1987 May 5;195(1):75–87. doi: 10.1016/0022-2836(87)90328-7. [DOI] [PubMed] [Google Scholar]
  48. Yamamoto K., Kusano K., Takahashi N. K., Yoshikura H., Kobayashi I. Gene conversion in the Escherichia coli RecF pathway: a successive half crossing-over model. Mol Gen Genet. 1992 Jul;234(1):1–13. doi: 10.1007/BF00272339. [DOI] [PubMed] [Google Scholar]
  49. Yamamoto K., Takahashi N., Fujitani Y., Yoshikura H., Kobayashi I. Orientation dependence in homologous recombination. Genetics. 1996 May;143(1):27–36. doi: 10.1093/genetics/143.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yamamoto K., Yoshikura H., Takahashi N., Kobayashi I. Apparent gene conversion in an Escherichia coli rec+ strain is explained by multiple rounds of reciprocal crossing-over. Mol Gen Genet. 1988 Jun;212(3):393–404. doi: 10.1007/BF00330842. [DOI] [PubMed] [Google Scholar]
  51. Yokochi T., Kusano K., Kobayashi I. Evidence for conservative (two-progeny) DNA double-strand break repair. Genetics. 1995 Jan;139(1):5–17. doi: 10.1093/genetics/139.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES