Abstract
A new circadian clock mutant has been isolated in Neurospora crassa. This new mutation, called period-6 (prd-6), has two features novel to known clock mutations. First, the mutation is temperature sensitive. At restrictive temperatures (above 21°) the mutation shortens circadian period length from a wild-type value of 21.5 hr to 18 hr. At permissive temperatures (below 21°) the mutant has a 20.5-hr period length close to that of the wild-type strain. Second, the prd-6 mutation is epistatic to the previously isolated clock mutation period-2 (prd-2). This epistasis is unusual in that the prd-2 prd-6 double mutant strain has an 18-hr period length at both the restrictive and permissive temperatures. That is, the temperature-sensitive aspect of the phenotype of the prd-6 strain is lost in the prd-2 prd-6 double mutant strain. This suggests that the gene products of the prd-2 and prd-6 loci may interact physically and that the presence of a normal prd-2(+) protein is required for low temperature to ``rescue'' the prd-6 mutant phenotype. These results, combined with our recent finding that prd-2 and some alleles of the frq gene show genetic synergy, suggest that it may be possible to establish a more comprehensive model of the Neurospora circadian clock.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson B. D., Johnson K. A., Loros J. J., Dunlap J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science. 1994 Mar 18;263(5153):1578–1584. doi: 10.1126/science.8128244. [DOI] [PubMed] [Google Scholar]
- Crosthwaite S. K., Loros J. J., Dunlap J. C. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell. 1995 Jun 30;81(7):1003–1012. doi: 10.1016/s0092-8674(05)80005-4. [DOI] [PubMed] [Google Scholar]
- Dunlap J. C. Genetic analysis of circadian clocks. Annu Rev Physiol. 1993;55:683–728. doi: 10.1146/annurev.ph.55.030193.003343. [DOI] [PubMed] [Google Scholar]
- Feldman J. F., Hoyle M. N. Complementation analysis of linked circadian clock mutants of Neurospora crassa. Genetics. 1976 Jan;82(1):9–17. doi: 10.1093/genetics/82.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldman J. F., Hoyle M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics. 1973 Dec;75(4):605–613. doi: 10.1093/genetics/75.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner G. F., Feldman J. F. Temperature Compensation of Circadian Period Length in Clock Mutants of Neurospora crassa. Plant Physiol. 1981 Dec;68(6):1244–1248. doi: 10.1104/pp.68.6.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter-Ensor M., Ousley A., Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell. 1996 Mar 8;84(5):677–685. doi: 10.1016/s0092-8674(00)81046-6. [DOI] [PubMed] [Google Scholar]
- Loros J. J., Feldman J. F. Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J Biol Rhythms. 1986 Fall;1(3):187–198. doi: 10.1177/074873048600100302. [DOI] [PubMed] [Google Scholar]
- Perkins D. D., Radford A., Newmeyer D., Björkman M. Chromosomal loci of Neurospora crassa. Microbiol Rev. 1982 Dec;46(4):426–570. doi: 10.1128/mr.46.4.426-570.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robb M. J., Wilson M. A., Vierula P. J. A fungal actin-related protein involved in nuclear migration. Mol Gen Genet. 1995 Jun 10;247(5):583–590. doi: 10.1007/BF00290350. [DOI] [PubMed] [Google Scholar]
- Sargent M. L., Briggs W. R., Woodward D. O. Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 1966 Oct;41(8):1343–1349. doi: 10.1104/pp.41.8.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargent M. L., Kaltenborn S. H. Effects of medium composition and carbon dioxide on circadian conidiation in neurospora. Plant Physiol. 1972 Jul;50(1):171–175. doi: 10.1104/pp.50.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargent M. L., Woodward D. O. Genetic determinants of circadian rhythmicity in Neurospora. J Bacteriol. 1969 Feb;97(2):861–866. doi: 10.1128/jb.97.2.861-866.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sehgal A., Rothenfluh-Hilfiker A., Hunter-Ensor M., Chen Y., Myers M. P., Young M. W. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science. 1995 Nov 3;270(5237):808–810. doi: 10.1126/science.270.5237.808. [DOI] [PubMed] [Google Scholar]