Skip to main content
Genetics logoLink to Genetics
. 1997 Jul;146(3):1197–1206. doi: 10.1093/genetics/146.3.1197

A Test of Neutrality Based on Interlocus Associations

J K Kelly 1
PMCID: PMC1208047  PMID: 9215920

Abstract

The evolutionary processes governing variability within genomic regions of low recombination have been the focus of many studies. Here, I investigate the statistical properties of a measure of intrlocus genetic associations under the assumption that mutations are selectively neutral and sites are completely linked. This measure, denoted Z(nS), is based on the squared correlation of allelic identity at pairs of polymorphic sites. Upper bounds for Z(nS) are determined by simulations. Various deviations from the neutral model, including several different forms of natural selection, will inflate the value of Z(nS) relative to its neutral theory expectations. Larger than expected values of Z(nS) are observed in genetic samples from the yellow-ac-scute and Adh regions of Drosophila melanogaster.

Full Text

The Full Text of this article is available as a PDF (974.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguade M., Miyashita N., Langley C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics. 1989 Jul;122(3):607–615. doi: 10.1093/genetics/122.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beech R. N., Brown A. J. Insertion-deletion variation at the yellow-achaete-scute region in two natural populations of Drosophila melanogaster. Genet Res. 1989 Feb;53(1):7–15. doi: 10.1017/s0016672300027804. [DOI] [PubMed] [Google Scholar]
  3. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  4. Begun D. J., Aquadro C. F. Molecular population genetics of the distal portion of the X chromosome in Drosophila: evidence for genetic hitchhiking of the yellow-achaete region. Genetics. 1991 Dec;129(4):1147–1158. doi: 10.1093/genetics/129.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charlesworth B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994 Jun;63(3):213–227. doi: 10.1017/s0016672300032365. [DOI] [PubMed] [Google Scholar]
  8. Eanes W. F., Labate J., Ajioka J. W. Restriction-map variation with the yellow-achaete-scute region in five populations of Drosophila melanogaster. Mol Biol Evol. 1989 Sep;6(5):492–502. doi: 10.1093/oxfordjournals.molbev.a040565. [DOI] [PubMed] [Google Scholar]
  9. Feder J. N., Gnirke A., Thomas W., Tsuchihashi Z., Ruddy D. A., Basava A., Dormishian F., Domingo R., Jr, Ellis M. C., Fullan A. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996 Aug;13(4):399–408. doi: 10.1038/ng0896-399. [DOI] [PubMed] [Google Scholar]
  10. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hudson R. R., Kaplan N. L. The coalescent process in models with selection and recombination. Genetics. 1988 Nov;120(3):831–840. doi: 10.1093/genetics/120.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  13. Laurie C. C., Stam L. F. The effect of an intronic polymorphism on alcohol dehydrogenase expression in Drosophila melanogaster. Genetics. 1994 Oct;138(2):379–385. doi: 10.1093/genetics/138.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lewontin R C. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964 Jan;49(1):49–67. doi: 10.1093/genetics/49.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lewontin R. C. The detection of linkage disequilibrium in molecular sequence data. Genetics. 1995 May;140(1):377–388. doi: 10.1093/genetics/140.1.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Little P. Human genetics. Woman's meat, a man's poison. Nature. 1996 Aug 8;382(6591):494–495. doi: 10.1038/382494a0. [DOI] [PubMed] [Google Scholar]
  17. Macpherson J. N., Weir B. S., Leigh Brown A. J. Extensive linkage disequilibrium in the achaete-scute complex of Drosophila melanogaster. Genetics. 1990 Sep;126(1):121–129. doi: 10.1093/genetics/126.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohta T., Kimura M. Linkage disequilibrium between two segregating nucleotide sites under the steady flux of mutations in a finite population. Genetics. 1971 Aug;68(4):571–580. doi: 10.1093/genetics/68.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simonsen K. L., Churchill G. A., Aquadro C. F. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics. 1995 Sep;141(1):413–429. doi: 10.1093/genetics/141.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Slatkin M. Detecting small amounts of gene flow from phylogenies of alleles. Genetics. 1989 Mar;121(3):609–612. doi: 10.1093/genetics/121.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stephan W., Langley C. H. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics. 1989 Jan;121(1):89–99. doi: 10.1093/genetics/121.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takahata N. The coalescent in two partially isolated diffusion populations. Genet Res. 1988 Dec;52(3):213–222. doi: 10.1017/s0016672300027683. [DOI] [PubMed] [Google Scholar]
  24. Tavaré S. Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol. 1984 Oct;26(2):119–164. doi: 10.1016/0040-5809(84)90027-3. [DOI] [PubMed] [Google Scholar]
  25. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  26. Watterson G. A. The homozygosity test of neutrality. Genetics. 1978 Feb;88(2):405–417. doi: 10.1093/genetics/88.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weir B. S., Cockerham C. C. Behavior of pairs of loci in finite monoecious populations. Theor Popul Biol. 1974 Dec;6(3):323–354. doi: 10.1016/0040-5809(74)90015-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES