Skip to main content
Genetics logoLink to Genetics
. 1997 Sep;147(1):305–314. doi: 10.1093/genetics/147.1.305

Mu Element-Generated Gene Conversions in Maize Attenuate the Dominant Knotted Phenotype

J Mathern 1, S Hake 1
PMCID: PMC1208114  PMID: 9286690

Abstract

The knotted1 gene was first defined by dominant mutations that affect leaf morphology. The original allele, Kn1-O, results from a 17-kb tandem duplication. Mutator (Mu) insertions near the junction of the two repeats suppress the leaf phenotype to different degrees depending on the position of the insertion. The Mu insertions also increase the frequency of recombination at Kn1-O to create derivative alleles in which the Mu element and one copy of the repeat are lost. These derivatives are normal in appearance. Here we describe two derivatives that retained the tandem duplication but gained insertions of 1.7 and 3 kb in length in place of the Mu element. In each case, the inserted DNA is a sequence that normally flanks the distal repeat unit. Thus, each derivative consists of a tandem duplication in which the repeat unit has been extended at its distal end by the length of the new insertion. The 1.7-kb insertion dampens the phenotype, as did the original Mu insertion, whereas the 3-kb insertion completely suppresses the knotted phenotype. We propose that gene conversion, stimulated by the double-strand break of the Mu excision, gave rise to these derivatives.

Full Text

The Full Text of this article is available as a PDF (7.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becraft P. W., Freeling M. Genetic analysis of Rough sheath1 developmental mutants of maize. Genetics. 1994 Jan;136(1):295–311. doi: 10.1093/genetics/136.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chandler V. L., Hardeman K. J. The Mu elements of Zea mays. Adv Genet. 1992;30:77–122. doi: 10.1016/s0065-2660(08)60319-3. [DOI] [PubMed] [Google Scholar]
  3. Chandler V. L., Walbot V. DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1767–1771. doi: 10.1073/pnas.83.6.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chandler V., Rivin C., Walbot V. Stable non-mutator stocks of maize have sequences homologous to the Mu1 transposable element. Genetics. 1986 Nov;114(3):1007–1021. doi: 10.1093/genetics/114.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doseff A., Martienssen R., Sundaresan V. Somatic excision of the Mu1 transposable element of maize. Nucleic Acids Res. 1991 Feb 11;19(3):579–584. doi: 10.1093/nar/19.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
  7. Fleenor D., Spell M., Robertson D., Wessler S. Nucleotide sequence of the maize Mutator element, Mu8. Nucleic Acids Res. 1990 Nov 25;18(22):6725–6725. doi: 10.1093/nar/18.22.6725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fowler J. E., Freeling M. Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Dev Genet. 1996;18(3):198–222. doi: 10.1002/(SICI)1520-6408(1996)18:3<198::AID-DVG2>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  9. Fowler J. E., Muehlbauer G. J., Freeling M. Mosaic analysis of the liguleless3 mutant phenotype in maize by coordinate suppression of mutator-insertion alleles. Genetics. 1996 May;143(1):489–503. doi: 10.1093/genetics/143.1.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Freeling M. A conceptual framework for maize leaf development. Dev Biol. 1992 Sep;153(1):44–58. doi: 10.1016/0012-1606(92)90090-4. [DOI] [PubMed] [Google Scholar]
  11. Freeling M., Hake S. Developmental genetics of mutants that specify knotted leaves in maize. Genetics. 1985 Nov;111(3):617–634. doi: 10.1093/genetics/111.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gloor G. B., Nassif N. A., Johnson-Schlitz D. M., Preston C. R., Engels W. R. Targeted gene replacement in Drosophila via P element-induced gap repair. Science. 1991 Sep 6;253(5024):1110–1117. doi: 10.1126/science.1653452. [DOI] [PubMed] [Google Scholar]
  13. Greene B., Walko R., Hake S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics. 1994 Dec;138(4):1275–1285. doi: 10.1093/genetics/138.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hake S. Unraveling the knots in plant development. Trends Genet. 1992 Mar;8(3):109–114. doi: 10.1016/0168-9525(92)90199-e. [DOI] [PubMed] [Google Scholar]
  15. Hershberger R. J., Warren C. A., Walbot V. Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10198–10202. doi: 10.1073/pnas.88.22.10198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hsia A. P., Schnable P. S. DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics. 1996 Feb;142(2):603–618. doi: 10.1093/genetics/142.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson-Schlitz D. M., Engels W. R. P-element-induced interallelic gene conversion of insertions and deletions in Drosophila melanogaster. Mol Cell Biol. 1993 Nov;13(11):7006–7018. doi: 10.1128/mcb.13.11.7006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kloeckener-Gruissem B., Freeling M. Transposon-induced promoter scrambling: a mechanism for the evolution of new alleles. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1836–1840. doi: 10.1073/pnas.92.6.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kurkulos M., Weinberg J. M., Roy D., Mount S. M. P element-mediated in vivo deletion analysis of white-apricot: deletions between direct repeats are strongly favored. Genetics. 1994 Mar;136(3):1001–1011. doi: 10.1093/genetics/136.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lisch D., Chomet P., Freeling M. Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics. 1995 Apr;139(4):1777–1796. doi: 10.1093/genetics/139.4.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lowe B., Mathern J., Hake S. Active Mutator elements suppress the knotted phenotype and increase recombination at the Kn1-O tandem duplication. Genetics. 1992 Nov;132(3):813–822. doi: 10.1093/genetics/132.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nassif N., Penney J., Pal S., Engels W. R., Gloor G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. doi: 10.1128/mcb.14.3.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Qin M. M., Robertson D. S., Ellingboe A. H. Cloning of the Mutator transposable element MuA2, a putative regulator of somatic mutability of the a1-Mum2 allele in maize. Genetics. 1991 Nov;129(3):845–854. doi: 10.1093/genetics/129.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Robertson D. S., Stinard P. S. Genetic evidence of mutator-induced deletions in the short arm of chromosome 9 of maize. Genetics. 1987 Feb;115(2):353–361. doi: 10.1093/genetics/115.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schwarz-Sommer Z., Gierl A., Cuypers H., Peterson P. A., Saedler H. Plant transposable elements generate the DNA sequence diversity needed in evolution. EMBO J. 1985 Mar;4(3):591–597. doi: 10.1002/j.1460-2075.1985.tb03671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith L. G., Greene B., Veit B., Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development. 1992 Sep;116(1):21–30. doi: 10.1242/dev.116.1.21. [DOI] [PubMed] [Google Scholar]
  27. Sylvester A. W., Cande W. Z., Freeling M. Division and differentiation during normal and liguleless-1 maize leaf development. Development. 1990 Nov;110(3):985–1000. doi: 10.1242/dev.110.3.985. [DOI] [PubMed] [Google Scholar]
  28. Veit B., Vollbrecht E., Mathern J., Hake S. A tandem duplication causes the Kn1-O allele of Knotted, a dominant morphological mutant of maize. Genetics. 1990 Jul;125(3):623–631. doi: 10.1093/genetics/125.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vollbrecht E., Veit B., Sinha N., Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 1991 Mar 21;350(6315):241–243. doi: 10.1038/350241a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES