Skip to main content
Genetics logoLink to Genetics
. 1997 Oct;147(2):701–712. doi: 10.1093/genetics/147.2.701

A Genetic and Mosaic Analysis of a Locus Involved in the Anesthesia Response of Drosophila Melanogaster

B Mir 1, S Iyer 1, M Ramaswami 1, K S Krishnan 1
PMCID: PMC1208191  PMID: 9335606

Abstract

We describe a genetic and behavioral analysis of several alleles of har38, a mutant with altered sensitivity to the general anesthetic halothane. We obtained a P-element-induced allele of har38 and generated several excision alleles by remobilizing the P element. The mutants narrow abdomen (na) and har85 are confirmed to be allelic to har38. Besides a decreased sensitivity to halothane, all mutant alleles of this locus cause a characteristic walking behavior in the absence of anesthetics. We have quantified this behavior using a geotaxis apparatus. Responses of the mutant alleles to different inhalational anesthetics were tested. The results strongly favor a multipathway model for the onset of anesthesia. Mosaic flies were tested for their response to halothane and checked for their abnormal walking behavior. The analysis suggests that both the behaviors are exhibited only by such mosaics as have the entire head of mutant origin. It is likely that this focus represents an element of a common pathway in the anesthetic response to several inhalational anesthetics but not all. This result is the first demonstration of regional specificity in the CNS of any animal for general anesthetic action.

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold J., Kankel D. R. Fate mapping multi-focus phenotypes. Genetics. 1981 Oct;99(2):211–229. doi: 10.1093/genetics/99.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benzer S. BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1112–1119. doi: 10.1073/pnas.58.3.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell D. B., Nash H. A. Use of Drosophila mutants to distinguish among volatile general anesthetics. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2135–2139. doi: 10.1073/pnas.91.6.2135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hall J. C. Control of male reproductive behavior by the central nervous system of Drosophila: dissection of a courtship pathway by genetic mosaics. Genetics. 1979 Jun;92(2):437–457. doi: 10.1093/genetics/92.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hotta Y., Benzer S. Genetic dissection of the Drosophila nervous system by means of mosaics. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1156–1163. doi: 10.1073/pnas.67.3.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hotta Y., Benzer S. Mapping of behaviour in Drosophila mosaics. Nature. 1972 Dec 29;240(5383):527–535. doi: 10.1038/240527a0. [DOI] [PubMed] [Google Scholar]
  7. Krishnan K. S., Nash H. A. A genetic study of the anesthetic response: mutants of Drosophila melanogaster altered in sensitivity to halothane. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8632–8636. doi: 10.1073/pnas.87.21.8632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leibovitch B. A., Campbell D. B., Krishnan K. S., Nash H. A. Mutations that affect ion channels change the sensitivity of Drosophila melanogaster to volatile anesthetics. J Neurogenet. 1995 Apr;10(1):1–13. doi: 10.3109/01677069509083455. [DOI] [PubMed] [Google Scholar]
  9. Lin M., Nash H. A. Influence of general anesthetics on a specific neural pathway in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10446–10451. doi: 10.1073/pnas.93.19.10446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Morgan P. G., Sedensky M. M., Meneely P. M., Cascorbi H. F. The effect of two genes on anesthetic response in the nematode Caenorhabditis elegans. Anesthesiology. 1988 Aug;69(2):246–251. doi: 10.1097/00000542-198808000-00015. [DOI] [PubMed] [Google Scholar]
  11. Morgan P. G., Sedensky M. M. Mutations conferring new patterns of sensitivity to volatile anesthetics in Caenorhabditis elegans. Anesthesiology. 1994 Oct;81(4):888–898. doi: 10.1097/00000542-199410000-00016. [DOI] [PubMed] [Google Scholar]
  12. Nash H. A., Campbell D. B., Krishnan K. S. New mutants of Drosophila that are resistant to the anesthetic effects of halothane. Ann N Y Acad Sci. 1991;625:540–544. doi: 10.1111/j.1749-6632.1991.tb33885.x. [DOI] [PubMed] [Google Scholar]
  13. Pallanck L., Ordway R. W., Ramaswami M., Chi W. Y., Krishnan K. S., Ganetzky B. Distinct roles for N-ethylmaleimide-sensitive fusion protein (NSF) suggested by the identification of a second Drosophila NSF homolog. J Biol Chem. 1995 Aug 11;270(32):18742–18744. doi: 10.1074/jbc.270.32.18742. [DOI] [PubMed] [Google Scholar]
  14. Sedensky M. M., Meneely P. M. Genetic analysis of halothane sensitivity in Caenorhabditis elegans. Science. 1987 May 22;236(4804):952–954. doi: 10.1126/science.3576211. [DOI] [PubMed] [Google Scholar]
  15. Szabad J., Máthé E., Puro J. Horka, a dominant mutation of Drosophila, induces nondisjunction and, through paternal effect, chromosome loss and genetic mosaics. Genetics. 1995 Apr;139(4):1585–1599. doi: 10.1093/genetics/139.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES