Skip to main content
Genetics logoLink to Genetics
. 1997 Nov;147(3):1225–1234. doi: 10.1093/genetics/147.3.1225

Variation of Dominance of Newly Arisen Adaptive Genes

D Bourguet 1, T Lenormand 1, T Guillemaud 1, V Marcel 1, D Fournier 1, M Raymond 1
PMCID: PMC1208246  PMID: 9383065

Abstract

Newly arisen adaptive alleles such as insecticide resistance genes represent a good opportunity to investigate the theories put forth to explain the molecular basis of dominance and its possible evolution. Dominance levels of insecticide resistance conferred by insensitive alleles of the acetylcholinesterase gene were analyzed in five resistant strains of the mosquito Culex pipiens. Dominance levels were found to differ between strains, varying from partial recessivity to complete dominance. This variation was not explained by differences in catalytic properties of the enzyme, since four of the five resistant strains had identical inhibition properties for the insensitive acetylcholinesterase. Among these four laboratory strains and in individuals collected from natural populations, we found a correlation between increased acetylcholinesterase activities and higher dominance levels. We propose a molecular explanation for how variation in acetylcholinesterase activity may result in variation of dominance level. We also conjecture that the four resistant strains did not differ in their amino acid sequence in the catalytically active regions of acetylcholinesterase, but that the expression of the gene was regulated by either neighboring or distant sites, thereby modifying the dominance level. Under this interpretation, dominance levels may evolve in this system, since heritable variation in acetylcholinesterase activity was found.

Full Text

The Full Text of this article is available as a PDF (1,010.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben Cheikh H., Pasteur N. Resistance to temephos, an organophosphorous insecticide, in Culex pipiens from Tunisia, North Africa. J Am Mosq Control Assoc. 1993 Sep;9(3):335–337. [PubMed] [Google Scholar]
  2. Bourguet D., Raymond M., Bisset J., Pasteur N., Arpagaus M. Duplication of the Ace.1 locus in Culex pipiens mosquitoes from the Caribbean. Biochem Genet. 1996 Oct;34(9-10):351–362. doi: 10.1007/BF00554410. [DOI] [PubMed] [Google Scholar]
  3. Bourguet D., Raymond M., Fournier D., Malcolm C. A., Toutant J. P., Arpagaus M. Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera:Culicidae). J Neurochem. 1996 Nov;67(5):2115–2123. doi: 10.1046/j.1471-4159.1996.67052115.x. [DOI] [PubMed] [Google Scholar]
  4. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  5. Falco S. C., Dumas K. S. Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics. 1985 Jan;109(1):21–35. doi: 10.1093/genetics/109.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fournier D., Bride J. M., Hoffmann F., Karch F. Acetylcholinesterase. Two types of modifications confer resistance to insecticide. J Biol Chem. 1992 Jul 15;267(20):14270–14274. [PubMed] [Google Scholar]
  7. Grigolo A., Oppenoorth F. J. The importance of DDT-dehydrochlorinase for the effect of the resistance gene kdr in the housefly Musca domestica L. Genetica. 1966;37(2):159–170. doi: 10.1007/BF01547127. [DOI] [PubMed] [Google Scholar]
  8. HALDANE J. B. The relation between density regulation and natural selection. Proc R Soc Lond B Biol Sci. 1956 Jul 24;145(920):306–308. doi: 10.1098/rspb.1956.0039. [DOI] [PubMed] [Google Scholar]
  9. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keightley P. D., Kacser H. Dominance, pleiotropy and metabolic structure. Genetics. 1987 Oct;117(2):319–329. doi: 10.1093/genetics/117.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kless H., Oren-Shamir M., Malkin S., McIntosh L., Edelman M. The D-E region of the D1 protein is involved in multiple quinone and herbicide interactions in photosystem II. Biochemistry. 1994 Aug 30;33(34):10501–10507. doi: 10.1021/bi00200a035. [DOI] [PubMed] [Google Scholar]
  12. Lee K. Y., Townsend J., Tepperman J., Black M., Chui C. F., Mazur B., Dunsmuir P., Bedbrook J. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 1988 May;7(5):1241–1248. doi: 10.1002/j.1460-2075.1988.tb02937.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mutero A., Pralavorio M., Bride J. M., Fournier D. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5922–5926. doi: 10.1073/pnas.91.13.5922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orr H. A. A test of Fisher's theory of dominance. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11413–11415. doi: 10.1073/pnas.88.24.11413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Raymond M., Fournier D., Bride J. M., Cuany A., Berge J., Magnin M., Pasteur N. Identification of resistance mechanisms in Culex pipiens (Diptera: Culicidae) from southern France: insensitive acetylcholinesterase and detoxifying oxidases. J Econ Entomol. 1986 Dec;79(6):1452–1458. doi: 10.1093/jee/79.6.1452. [DOI] [PubMed] [Google Scholar]
  16. Wagner G. P., Bürger R. On the evolution of dominance modifiers II: a non-equilibrium approach to the evolution of genetic systems. J Theor Biol. 1985 Apr 7;113(3):475–500. doi: 10.1016/s0022-5193(85)80034-5. [DOI] [PubMed] [Google Scholar]
  17. Wilkie A. O. The molecular basis of genetic dominance. J Med Genet. 1994 Feb;31(2):89–98. doi: 10.1136/jmg.31.2.89. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES