Abstract
A method is proposed for characterizing the structure of genealogies among alleles that regulate selfincompatibility in flowering plants. Expected distributions of ratios of divergence times among alleles, scaled by functions of allele number, were generated by numerical simulation. These distributions appeared relatively insensitive to the particular parameter values assigned in the simulations over a fourfold range in effective population size and a 100-fold range in mutation rate. Generalized leastsquares estimates of the scaled indices were obtained from genealogies reconstructed from nucleotide sequences of self-incompatibility alleles from natural populations of two solanaceous species. Comparison of the observed indices to the expected distributions generated by numerical simulation indicated that the allelic genealogy of one species appeared consistent with the symmetric balancing selection generated by self-incompatibility. However, the allelic genealogy of the second species showed unusually long terminal branches, suggesting the operation of additional evolutionary processes.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyes D. C., Chen C. H., Tantikanjana T., Esch J. J., Nasrallah J. B. Isolation of a second S-locus-related cDNA from Brassica oleracea: genetic relationships between the S locus and two related loci. Genetics. 1991 Jan;127(1):221–228. doi: 10.1093/genetics/127.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyes D. C., Nasrallah J. B. Physical linkage of the SLG and SRK genes at the self-incompatibility locus of Brassica oleracea. Mol Gen Genet. 1993 Jan;236(2-3):369–373. doi: 10.1007/BF00277135. [DOI] [PubMed] [Google Scholar]
- Boyes D. C., Nasrallah M. E., Vrebalov J., Nasrallah J. B. The self-incompatibility (S) haplotypes of Brassica contain highly divergent and rearranged sequences of ancient origin. Plant Cell. 1997 Feb;9(2):237–247. doi: 10.1105/tpc.9.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broothaerts W., Janssens G. A., Proost P., Broekaert W. F. cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol. 1995 Feb;27(3):499–511. doi: 10.1007/BF00019317. [DOI] [PubMed] [Google Scholar]
- Coleman C. E., Kao T. The flanking regions of two Petunia inflata S alleles are heterogeneous and contain repetitive sequences. Plant Mol Biol. 1992 Feb;18(4):725–737. doi: 10.1007/BF00020014. [DOI] [PubMed] [Google Scholar]
- Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
- Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang S., Lee H. S., Karunanandaa B., Kao T. H. Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen. Plant Cell. 1994 Jul;6(7):1021–1028. doi: 10.1105/tpc.6.7.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murfett J., Atherton T. L., Mou B., Gasser C. S., McClure B. A. S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature. 1994 Feb 10;367(6463):563–566. doi: 10.1038/367563a0. [DOI] [PubMed] [Google Scholar]
- Nee S., Holmes E. C., Rambaut A., Harvey P. H. Inferring population history from molecular phylogenies. Philos Trans R Soc Lond B Biol Sci. 1995 Jul 29;349(1327):25–31. doi: 10.1098/rstb.1995.0087. [DOI] [PubMed] [Google Scholar]
- Richman A. D., Kao T. H., Schaeffer S. W., Uyenoyama M. K. S-allele sequence diversity in natural populations of Solanum carolinense (Horsenettle). Heredity (Edinb) 1995 Oct;75(Pt 4):405–415. doi: 10.1038/hdy.1995.153. [DOI] [PubMed] [Google Scholar]
- Richman A. D., Uyenoyama M. K., Kohn J. R. Allelic diversity and gene genealogy at the self-incompatibility locus in the Solanaceae. Science. 1996 Aug 30;273(5279):1212–1216. doi: 10.1126/science.273.5279.1212. [DOI] [PubMed] [Google Scholar]
- Sassa H., Nishio T., Kowyama Y., Hirano H., Koba T., Ikehashi H. Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol Gen Genet. 1996 Mar 20;250(5):547–557. doi: 10.1007/BF02174443. [DOI] [PubMed] [Google Scholar]
- Slatkin M., Hudson R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 1991 Oct;129(2):555–562. doi: 10.1093/genetics/129.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Relationship between DNA polymorphism and fixation time. Genetics. 1990 Jun;125(2):447–454. doi: 10.1093/genetics/125.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Relationship between migration and DNA polymorphism in a local population. Genetics. 1990 Sep;126(1):231–234. doi: 10.1093/genetics/126.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989 Nov;123(3):597–601. doi: 10.1093/genetics/123.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2419–2423. doi: 10.1073/pnas.87.7.2419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N., Nei M. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics. 1990 Apr;124(4):967–978. doi: 10.1093/genetics/124.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N., Satta Y., Klein J. Polymorphism and balancing selection at major histocompatibility complex loci. Genetics. 1992 Apr;130(4):925–938. doi: 10.1093/genetics/130.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uyenoyama M. K. A generalized least-squares estimate for the origin of sporophytic self-incompatibility. Genetics. 1995 Feb;139(2):975–992. doi: 10.1093/genetics/139.2.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vekemans X., Slatkin M. Gene and allelic genealogies at a gametophytic self-incompatibility locus. Genetics. 1994 Aug;137(4):1157–1165. doi: 10.1093/genetics/137.4.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]