Skip to main content
Genetics logoLink to Genetics
. 1973 Jan;73(1):1–11. doi: 10.1093/genetics/73.1.1

Selective Allele Loss in Mixed Infections with T4 Bacteriophage

Wendy C Benz 1, Hillard Berger 1
PMCID: PMC1212872  PMID: 4265784

Abstract

Evidence is presented that when E. coli B is mixedly infected with T4D wild type and rII deletion mutants, the excess DNA of the wild type allele is lost. No loss is seen in mixed infections with rII point mutants and wild type. In similar experiments with lysozyme addition mutants, the mutant allele is lost. We believe these results demonstrate a repair system which removes "loops" in heteroduplex DNA molecules. A number of phage and host functions have been tested for involvement in the repair of the excess DNA, and T4 genes x and v have been implicated in this process.

Full Text

The Full Text of this article is available as a PDF (628.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger H. Genetic analysis of T4D phage heterozygotes produced in the presence of 5-fluorodeoxyuridine. Genetics. 1965 Oct;52(4):729–746. doi: 10.1093/genetics/52.4.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger H., Warren A. J. Effects of deletion mutations on high negative interference in T4D bacteriophage. Genetics. 1969 Sep;63(1):1–5. doi: 10.1093/genetics/63.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brammar W. J., Berger H., Yanofsky C. Altered amino acid sequences produced by reversion of frameshift mutants of tryptophan synthetase A gene of E. coli. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1499–1506. doi: 10.1073/pnas.58.4.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chase M, Doermann A H. High Negative Interference over Short Segments of the Genetic Structure of Bacteriophage T4. Genetics. 1958 May;43(3):332–353. doi: 10.1093/genetics/43.3.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doermann A. H., Boehner L. The identification of complex genotypes in bacteriophage T4. I. Methods. Genetics. 1970 Nov;66(3):417–428. doi: 10.1093/genetics/66.3.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drake J. W., Allen E. F., Forsberg S. A., Preparata R. M., Greening E. O. Genetic control of mutation rates in bacteriophageT4. Nature. 1969 Mar 22;221(5186):1128–1132. [PubMed] [Google Scholar]
  7. Drake J. W. Heteroduplex heterozygotes in bacteriophage T4 involving mutations of various dimensions. Proc Natl Acad Sci U S A. 1966 Mar;55(3):506–512. doi: 10.1073/pnas.55.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Friedberg E. C., King J. J. Dark repair of ultraviolet-irradiated deoxyribonucleic acid by bacteriophage T4: purification and characterization of a dimer-specific phage-induced endonuclease. J Bacteriol. 1971 May;106(2):500–507. doi: 10.1128/jb.106.2.500-507.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HARM W. Mutants of phage T4 with increased sensitivity to ultraviolet. Virology. 1963 Jan;19:66–71. doi: 10.1016/0042-6822(63)90025-4. [DOI] [PubMed] [Google Scholar]
  10. Hartman P. E., Levine K., Hartman Z., Berger H. Hycanthone: a frameshift mutagen. Science. 1971 Jun 4;172(3987):1058–1060. doi: 10.1126/science.172.3987.1058. [DOI] [PubMed] [Google Scholar]
  11. Imada M., Inouye M., Eda M., Tsugita A. Frameshift mutation in the lysozyme gene of bacteriophage T4: demonstration of the insertion offour bases and the preferential occurrence of base addition in acridine mutagenesis. J Mol Biol. 1970 Dec 14;54(2):199–217. doi: 10.1016/0022-2836(70)90427-4. [DOI] [PubMed] [Google Scholar]
  12. Mosig G., Ehring R., Duerr E. O. Replication and recombination of DNA fragments in bacteriophage T4. Cold Spring Harb Symp Quant Biol. 1968;33:361–369. doi: 10.1101/sqb.1968.033.01.042. [DOI] [PubMed] [Google Scholar]
  13. NOMURA M., BENZER S. The nature of the "deletion" mutants in the rII region of phage T4. J Mol Biol. 1961 Oct;3:684–692. doi: 10.1016/s0022-2836(61)80031-4. [DOI] [PubMed] [Google Scholar]
  14. Ocada Y., Amagase S., Tsugita A. Frameshift mutation in the lysozyme gene of bacteriophage T4: demonstration of the insertion of five bases, and a summary of in vivo codons and lysozyme activities. J Mol Biol. 1970 Dec 14;54(2):219–246. doi: 10.1016/0022-2836(70)90428-6. [DOI] [PubMed] [Google Scholar]
  15. Oeschger N. S., Hartman P. E. ICR-induced frameshift mutations in the histidine operon of Salmonella. J Bacteriol. 1970 Feb;101(2):490–504. doi: 10.1128/jb.101.2.490-504.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Snustad D. P. Differential transmission of amber and wild-type alleles of bacteriophage T4 in mixedly infected cells of Escherichia coli. Virology. 1970 May;41(1):52–65. doi: 10.1016/0042-6822(70)90053-x. [DOI] [PubMed] [Google Scholar]
  17. Séchaud J., Streisinger G., Emrich J., Newton J., Lanford H., Reinhold H., Stahl M. M. Chromosome structure in phage T4, II. Terminal redundancy and heterozygosis. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1333–1339. doi: 10.1073/pnas.54.5.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Westmoreland B. C., Szybalski W., Ris H. Mapping of deletions and substitutions in heteroduplex DNA molecules of bacteriophage lambda by electron microscopy. Science. 1969 Mar 21;163(3873):1343–1348. doi: 10.1126/science.163.3873.1343. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES