Skip to main content
Genetics logoLink to Genetics
. 1973 Sep;75(1):155–167. doi: 10.1093/genetics/75.1.155

Segmental Aneuploidy as a Probe for Structural Genes in Drosophila: Mitochondrial Membrane Enzymes

Stephen J O'Brien 1,2, Richard C Gethmann 1,2
PMCID: PMC1212992  PMID: 4202771

Abstract

A method for detecting possible structural genes in D. melanogaster based on gene dosage dependency is presented. By making thirty crosses between Y-autosome translocations, and an attached-4 cross, it is possible to produce large duplications (approximately 150 salivary gland chromosome bands in length) for every autosomal region with the exception of 83DE. The usefulness of the technique was demonstrated by dosage dependency of three known gene-enzyme systems: α-glycerophosphate dehydrogenase-1, alcohol dehydrogenase and malate dehydrogenase. A screen for genes affecting two enzymes localized on the inner membrane of the mitochondrion, α-glycerophosphate oxidase (αGPO) and succinic dehydrogenase (SHD), produced a dosage-sensitive region in each case. Region 50C-52E affected αGPO activity and region 28D-29F affected SDH activity. The latter region apparently includes the malic dehydrogenase-1 gene. The methodology and limitations of the technique are discussed.

Full Text

The Full Text of this article is available as a PDF (1,015.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker W. K. Position-effect variegation. Adv Genet. 1968;14:133–169. [PubMed] [Google Scholar]
  2. Bell J. B., MacIntyre R. J., Olivieri A. P. Induction of null-activity mutants for the acid phosphatase-1 gene in Drosophila melanogaster. Biochem Genet. 1972 Apr;6(2):205–216. doi: 10.1007/BF00486404. [DOI] [PubMed] [Google Scholar]
  3. Coote J. L., Work T. S. Proteins coded by mitochondrial DNA of mammalian cells. Eur J Biochem. 1971 Dec 10;23(3):564–574. doi: 10.1111/j.1432-1033.1971.tb01655.x. [DOI] [PubMed] [Google Scholar]
  4. Farnsworth M. W. Oxidative phosphorylation in the minute mutants of Drosophila. J Exp Zool. 1965 Dec;160(3):363–368. doi: 10.1002/jez.1401600313. [DOI] [PubMed] [Google Scholar]
  5. Glassman E. Genetic regulation of xanthine dehydrogenase in Drosophila melanogaster. Fed Proc. 1965 Sep-Oct;24(5):1243–1251. [PubMed] [Google Scholar]
  6. Grell E. H. Electrophoretic variants of alpha-glycerophosphate dehydrogenase in Drosophila melanogaster. Science. 1967 Dec 8;158(3806):1319–1320. doi: 10.1126/science.158.3806.1319. [DOI] [PubMed] [Google Scholar]
  7. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McReynolds M. S., Kitto G. B. Purification and properties of Drosophila malate dehydrogenases. Biochim Biophys Acta. 1970 Feb 11;198(2):165–175. doi: 10.1016/0005-2744(70)90048-3. [DOI] [PubMed] [Google Scholar]
  9. O'Brien S. J. Comparative analysis of malate dehydrogenases of Drosophila melanogaster. Biochem Genet. 1973 Oct;10(2):191–205. doi: 10.1007/BF00485765. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES