Skip to main content
Genetics logoLink to Genetics
. 1978 Apr;88(4):829–844. doi: 10.1093/genetics/88.4.829

The Effect of Intragenic Recombination on the Number of Alleles in a Finite Population

Curtis Strobeck 1, Kenneth Morgan 1
PMCID: PMC1213820  PMID: 17248821

Abstract

A two-site infinite allele model is constructed to study the effect of intragenic recombination on the number of neutral alleles and the distribution of their frequencies in a finite population. The results of theory and Monte Carlo simulation of the two-site model demonstrate that intragenic recombination significantly increases the mean and variance of the number of alleles when the rates of mutation and recombination are as large as the reciprocal of the population size. Data from natural populations indicate that this may be a significant process in generating variation and determining its distribution.

Full Text

The Full Text of this article is available as a PDF (664.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chovnick A., Ballantyne G. H., Holm D. G. Studies on gene conversion and its relationship to linked exchange in Drosophila melanogaster. Genetics. 1971 Oct;69(2):179–209. doi: 10.1093/genetics/69.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coyne J. A. Lack of genic similarity between two sibling species of drosophila as revealed by varied techniques. Genetics. 1976 Nov;84(3):593–607. doi: 10.1093/genetics/84.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
  4. Gutz H., Leslie J. F. Gene conversion: a hitherto overlooked parameter in population genetics. Genetics. 1976 Aug;83(4):861–866. doi: 10.1093/genetics/83.4.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hill W. G. Linkage disequilibrium among multiple neutral alleles produced by mutation in finite population. Theor Popul Biol. 1975 Oct;8(2):117–126. doi: 10.1016/0040-5809(75)90028-3. [DOI] [PubMed] [Google Scholar]
  6. Karlin S., McGregor J. Rates and probabilities of fixation for two locus random mating finite populations without selection. Genetics. 1968 Jan;58(1):141–159. doi: 10.1093/genetics/58.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lewontin R. C., Hubby J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966 Aug;54(2):595–609. doi: 10.1093/genetics/54.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Serant D. Linkage and inbreeding coefficients in a finite random mating population. Theor Popul Biol. 1974 Oct;6(2):251–263. doi: 10.1016/0040-5809(74)90026-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES