Abstract
Thirteen chromosomal duplications, all unlinked to their linkage group of origin, have been identified following X-irradiation. Ten are X-chromosome duplications, of which six are half-translocations on three autosomomal linkage groups and four are free fragments. Five of the half-translocations are homozygous fertile and two are recognizable cytologically as chromosome satellites, both of which show some mitotic instability. The free-X duplications show varying tendencies for loss. Three appear not to overlap in extent previously identified free-X duplications. The fourth carries genes from linkage group V, as well as X. Three duplications of a portion of linkage group II were identified and found to be free and quite stable in hyperploids. Some of the free duplications tend to disjoin from the X chromosome in males. New X-chromosome map data are presented.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Comings D. E., Okada T. A. Holocentric chromosomes in Oncopeltus: kinetochore plates are present in mitosis but absent in meiosis. Chromosoma. 1972;37(2):177–192. doi: 10.1007/BF00284937. [DOI] [PubMed] [Google Scholar]
- Epstein H. F., Waterston R. H., Brenner S. A mutant affecting the heavy chain of myosin in Caenorhabditis elegans. J Mol Biol. 1974 Dec 5;90(2):291–300. doi: 10.1016/0022-2836(74)90374-x. [DOI] [PubMed] [Google Scholar]
- Hall J. C., Kankel D. R. Genetics of acetylcholinesterase in Drosophila melanogaster. Genetics. 1976 Jul;83(3 PT2):517–535. [PMC free article] [PubMed] [Google Scholar]
- Herman R. K., Albertson D. G., Brenner S. Chromosome rearrangements in Caenorhabditis elegans. Genetics. 1976 May;83(1):91–105. doi: 10.1093/genetics/83.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman R. K. Crossover suppressors and balanced recessive lethals in Caenorhabditis elegans. Genetics. 1978 Jan;88(1):49–65. doi: 10.1093/genetics/88.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newmeyer D., Galeazzi D. R. The Instability of Neurospora Duplication Dp(IL-->IR)H4250 , and Its Genetic Control. Genetics. 1977 Mar;85(3):461–487. doi: 10.1093/genetics/85.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandler L., Szauter P. The effect of recombination-defective meiotic mutants on fourth-chromosome crossing over in Drosophila melanogaster. Genetics. 1978 Dec;90(4):699–712. doi: 10.1093/genetics/90.4.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]