Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1964 Dec;93(3):517–520. doi: 10.1042/bj0930517

Nicotinamide coenzyme concentrations in livers of normal, starved and alloxan-diabetic rats

D S Kronfeld 1, Fiora Raggi 1
PMCID: PMC1214002  PMID: 4378756

Full text

PDF
518

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BASSHAM J. A., BIRT L. M., HEMS R., LOENING U. E. Determination of the reduced and oxidized pyridine nucleotides in animal tissues. Biochem J. 1959 Nov;73:491–499. doi: 10.1042/bj0730491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BORTZ W. M., LYNEN F. THE INHIBITION OF ACETYL COA CARBOXYLASE BY LONG CHAIN ACYL COA DERIVATIVES. Biochem Z. 1963 Aug 14;337:505–509. [PubMed] [Google Scholar]
  3. BRADY R. O., GURIN S. Biosynthesis of fatty acids by cell-free or water-soluble enzyme systems. J Biol Chem. 1952 Nov;199(1):421–431. [PubMed] [Google Scholar]
  4. BURCH H. B., LOWRY O. H., VONDIPPE P. THE STABILITY OF TRIPHOSPHOPYRIDINE NUCLEOTIDE AND ITS REDUCED FORM IN RAT LIVER. J Biol Chem. 1963 Aug;238:2838–2842. [PubMed] [Google Scholar]
  5. CAIGER P., MORTON R. K., FILSELL O. H., JARRETT I. G. A comparative study of nicotinamide nucleotide coenzymes during growth of the sheep and rat. Biochem J. 1962 Nov;85:351–359. doi: 10.1042/bj0850351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CAMPBELL L. A., KRONFELD D. S. Estimation of low concentrations of plasma glucose using glucose oxidase. Am J Vet Res. 1961 May;22:587–589. [PubMed] [Google Scholar]
  7. GIBSON D. M., HUBBARD D. D. Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochem Biophys Res Commun. 1960 Nov;3:531–535. doi: 10.1016/0006-291x(60)90169-8. [DOI] [PubMed] [Google Scholar]
  8. GLOCK G. E., MCLEAN P. A preliminary investigation of the hormonal control of the hexose monophosphate oxidative pathway. Biochem J. 1955 Nov;61(3):390–397. doi: 10.1042/bj0610390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GLOCK G. E., MCLEAN P. Effects of hormones on levels of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in liver and diaphragm. Biochem J. 1955 Nov;61(3):397–402. doi: 10.1042/bj0610397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GORDON E. E. The rate of generation of reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate in the liver of normal and alloxan diabetic rats. J Biol Chem. 1963 Jun;238:2135–2140. [PubMed] [Google Scholar]
  11. KORCHAK H. M., MASORO E. J. Changes in the level of the fatty acid synthesizing enzymes during starvation. Biochim Biophys Acta. 1962 Apr 9;58:354–356. doi: 10.1016/0006-3002(62)91022-3. [DOI] [PubMed] [Google Scholar]
  12. KRONFELD D. S., KLEIBER M. Mammary ketogenesis in the cow. J Appl Physiol. 1959 Nov;14:1033–1035. doi: 10.1152/jappl.1959.14.6.1033. [DOI] [PubMed] [Google Scholar]
  13. Kronfeld D. S., Raggi F. Nicotinamide coenzyme concentrations in mammary biopsy samples from ketotic cows. Biochem J. 1964 Jan;90(1):219–224. doi: 10.1042/bj0900219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LANGDON R. G. The biosynthesis of fatty acids in rat liver. J Biol Chem. 1957 Jun;226(2):615–629. [PubMed] [Google Scholar]
  15. MASORO E. J., KORCHAK H. M., PORTER E. A study of the lipogenic inhibitory mechanisms induced by fasting. Biochim Biophys Acta. 1962 Apr 23;58:407–416. doi: 10.1016/0006-3002(62)90051-3. [DOI] [PubMed] [Google Scholar]
  16. MATTHES K. J., ABRAHAM S., CHAIKOFF I. L. Fatty acid synthesis from acetate by normal and diabetic rat liver homogenate fractions. II. Effect of microsomes and oxidation of substrates. J Biol Chem. 1960 Sep;235:2560–2568. [PubMed] [Google Scholar]
  17. NUMA S., MATSUHASHI M., LYNEN F. [On disorders of fatty acid synthesis in hunger and alloxan diabetes. I. Fatty acid synthesis in the liver of normal and fasting rats]. Biochem Z. 1961;334:203–217. [PubMed] [Google Scholar]
  18. PORTER J. W., LONG R. W. A study of the role of palmityl coenzyme A in fatty acid synthesis by the pigeon liver system. J Biol Chem. 1958 Jul;233(1):20–25. [PubMed] [Google Scholar]
  19. SIPERSTEIN M. D., FAGAN V. M. Studies on the relationship between glucose oxidation and intermediary metabolism. II. The role of glucose oxidation in lipogenesis in diabetic rat liver. J Clin Invest. 1958 Aug;37(8):1196–1201. doi: 10.1172/JCI103709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SPENCER A. F., LOWENSTEIN J. M. The supply of precursors for the synthesis of fatty acids. J Biol Chem. 1962 Dec;237:3640–3648. [PubMed] [Google Scholar]
  21. TEPPERMAN J., TEPPERMAN H. M. Effects of antecedent food intake pattern on hepatic lipogenesis. Am J Physiol. 1958 Apr;193(1):55–64. doi: 10.1152/ajplegacy.1958.193.1.55. [DOI] [PubMed] [Google Scholar]
  22. TUBBS P. K. INHIBITION OF CITRATE FORMATION BY LONG-CHAIN ACYL THIOESTERS OF COENZYME A AS A POSSIBLE CONTROL MECHANISM IN FATTY ACID BIOSYNTHESIS. Biochim Biophys Acta. 1963 Oct 22;70:608–609. doi: 10.1016/0006-3002(63)90804-7. [DOI] [PubMed] [Google Scholar]
  23. VAGELOS P. R., ALBERTS A. W., MARTIN D. B. Studies on the mechnism of activation of acetyl coenzyme A carboxylase by citrate. J Biol Chem. 1963 Feb;238:533–540. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES