Abstract
A genetical model is formulated in which the sex ratio in broods and the relative size of broods are determined by the genotype at an autosomal locus. The results also apply to the case in which the sex-ratio locus is sex linked and expressed in the homogametic sex and to the case in which the locus is expressed in the diploid sex of a haplodiploid organism. Fisher (1930) argued that the sex ratio evolves under natural selection to a value such that parental expenditure is equalized between the sexes. Shaw and Mohler (1953) and MacArthur (1965) proposed that the sex ratio evolves to increase a certain expression for fitness. The sex ratio suggested by Fisher (1930) is in fact identical to the sex ratio specified by these maximization principles. Further, in our model, the Fisherian sex ratio corresponds exactly to the sex ratio at certain equilibria that are approached whenever they exist.
Full Text
The Full Text of this article is available as a PDF (886.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Hartl D. L., Brown S. W. The origin of male haploid genetic systems and their expected sex ratio. Theor Popul Biol. 1970 Aug;1(2):165–190. doi: 10.1016/0040-5809(70)90033-x. [DOI] [PubMed] [Google Scholar]
- Karlin S., McGregor J. Polymorphisms for genetic and ecological systems with weak coupling. Theor Popul Biol. 1972 Jun;3(2):210–238. doi: 10.1016/0040-5809(72)90027-5. [DOI] [PubMed] [Google Scholar]
- Trivers R. L., Hare H. Haploidploidy and the evolution of the social insect. Science. 1976 Jan 23;191(4224):249–263. doi: 10.1126/science.1108197. [DOI] [PubMed] [Google Scholar]