Skip to main content
Genetics logoLink to Genetics
. 1979 Feb;91(2):255–274. doi: 10.1093/genetics/91.2.255

Lack of Spontaneous Sister Chromatid Exchanges in Somatic Cells of DROSOPHILA MELANOGASTER

M Gatti 1, G Santini 1, S Pimpinelli 1, G Olivieri 1
PMCID: PMC1216365  PMID: 109350

Abstract

Neural ganglia of wild type third-instar larvae of Drosophila melanogaster were incubated for 13 hours at various concentrations of BUdR (1, 3, 9, 27 µg/ml). Metaphases were collected with colchicine, stained with Hoechst 33258, and scored under a fluorescence microscope. Metaphases in which the sister chromatids were clearly differentiated were scored for the presence of sister-chromatid exchanges (SCEs). At the lowest concentration of BUdR (1 µg/ml), no SCEs were observed in either male or female neuroblasts. The SCEs were found at the higher concentrations of BUdR (3, 9 and 27 µg/ml) and with a greater frequency in females than in males. Therefore SCEs are not a spontaneous phenomenon in D. melanogaster, but are induced by BUdR incorporated in the DNA. A striking nonrandomness was found in the distribution of SCEs along the chromosomes. More than a third of the SCEs were clustered in the junctions between euchromatin and heterochromatin. The remaining SCEs were preferentially localized within the heterochromatic regions of the X chromosome and the autosomes and primarily on the entirely heterochromatic Y chromosome.—In order to find an alternative way of measuring the frequency of SCEs in Drosophila neuroblasts, the occurrence of double dicentric rings was studied in two stocks carrying monocentric ring-X chromosomes. One ring chromosome, C(1)TR 94–2, shows a rate of dicentric ring formation corresponding to the frequency of SCEs observed in the BUdR-labelled rod chromosomes. The other ring studied, R(1)2, exhibits a frequency of SCEs higher than that observed with both C(1)TR 94–2 and rod chromosomes.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. W., Latt S. A. Analysis of sister chromatid exchange formation in vivo in mouse spermatogonia as a new test system for environmental mutagens. Nature. 1976 Apr 1;260(5550):449–451. doi: 10.1038/260449a0. [DOI] [PubMed] [Google Scholar]
  2. Baker B. S., Boyd J. B., Carpenter A. T., Green M. M., Nguyen T. D., Ripoll P., Smith P. D. Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4140–4144. doi: 10.1073/pnas.73.11.4140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker B. S., Carpenter A. T., Esposito M. S., Esposito R. E., Sandler L. The genetic control of meiosis. Annu Rev Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
  4. Beadle G W, Emerson S. Further Studies of Crossing over in Attached-X Chromosomes of Drosophila Melanogaster. Genetics. 1935 Mar;20(2):192–206. doi: 10.1093/genetics/20.2.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beek B., Obe G. The human leukocyte test system. VI. The use of sister chromatid exchanges as possible indicators for mutagenic activities. Humangenetik. 1975 Sep 10;29(2):127–134. doi: 10.1007/BF00430349. [DOI] [PubMed] [Google Scholar]
  6. Bloom S. E., Hsu T. C. Differential fluorescence of sister chromatids in chicken embryos exposed to 5-bromodeoxyuridine. Chromosoma. 1975 Jul 21;51(3):261–267. doi: 10.1007/BF00284819. [DOI] [PubMed] [Google Scholar]
  7. Bostock C. J., Christie S. Analysis of the frequency of sister chromatid exchange in different regions of chromosomes of the kangaroo rat (Dipodomys ordii). Chromosoma. 1976 Jul 8;56(3):275–287. doi: 10.1007/BF00293191. [DOI] [PubMed] [Google Scholar]
  8. Brewen J. G., Peacock W. J. The effect of tritiated thymidine on sister-chromatid exchange in a ring chromosome. Mutat Res. 1969 May-Jun;7(3):433–440. doi: 10.1016/0027-5107(69)90114-6. [DOI] [PubMed] [Google Scholar]
  9. Carrano A. V., Wolff S. Distribution of sister chromatid exchanges in the euchromatin and heterochromatin of the Indian muntjac. Chromosoma. 1975 Dec 29;53(4):361–369. doi: 10.1007/BF00294083. [DOI] [PubMed] [Google Scholar]
  10. Chaganti R. S., Schonberg S., German J. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4508–4512. doi: 10.1073/pnas.71.11.4508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gatti M., Pimpinelli S., De Marco A., Tanzarella C. Chemical induction of chromosome aberrations in somatic cells of Drosophila melanogaster. Mutat Res. 1975 Dec;33(2-3):201–212. doi: 10.1016/0027-5107(75)90196-7. [DOI] [PubMed] [Google Scholar]
  12. HSU T. C., SOMERS C. E. Effect of 5-bromodeoxyuridine on mamalian chromosomes. Proc Natl Acad Sci U S A. 1961 Mar 15;47:396–403. doi: 10.1073/pnas.47.3.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hinton C W. A Cytological Study of W Chromosome Instability in Cleavage Mitoses of Drosophila Melanogaster. Genetics. 1959 Sep;44(5):923–931. doi: 10.1093/genetics/44.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hsu T. C., Pathak S. Differential rates of sister chromatid exchanges between euchromatin and heterochromatin. Chromosoma. 1976 Nov 19;58(3):269–273. doi: 10.1007/BF00292093. [DOI] [PubMed] [Google Scholar]
  15. Kato H. Spontaneous sister chromatid exchanges detected by a BUdR-labelling method. Nature. 1974 Sep 6;251(5470):70–72. doi: 10.1038/251070a0. [DOI] [PubMed] [Google Scholar]
  16. Kato H., Stich H. F. Sister chromatid exchanges in ageing and repair-deficient human fibroblasts. Nature. 1976 Apr 1;260(5550):447–448. doi: 10.1038/260447a0. [DOI] [PubMed] [Google Scholar]
  17. Kistenmacher M. L., Punnett H. H. Comparative behavior of ring chromosomes. Am J Hum Genet. 1970 May;22(3):304–318. [PMC free article] [PubMed] [Google Scholar]
  18. McClintock B. The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. Genetics. 1938 Jul;23(4):315–376. doi: 10.1093/genetics/23.4.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Natarajan A. T., Klásterská I. Heterochromatin and sister chromatid exchanges in the chromosomes of Microtus agrestis. Hereditas. 1975;79(1):150–154. doi: 10.1111/j.1601-5223.1975.tb01472.x. [DOI] [PubMed] [Google Scholar]
  20. Peacock W. J., Brutlag D., Goldring E., Appels R., Hinton C. W., Lindsley D. L. The organization of highly repeated DNA sequences in Drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38:405–416. doi: 10.1101/sqb.1974.038.01.043. [DOI] [PubMed] [Google Scholar]
  21. Pimpinelli S., Gatti M., De Marco A. Evidence for heterogeneity in heterochromatin of Drosophila melanogaster. Nature. 1975 Jul 24;256(5515):335–337. doi: 10.1038/256335a0. [DOI] [PubMed] [Google Scholar]
  22. Pimpinelli S., Pignone D., Santini G., Gatti M., Olivieri G. Mutagen specificity in the induction of chromosomal aberrations in somatic cells of Drosophila melanogaster. Genetics. 1977 Feb;85(2):249–257. doi: 10.1093/genetics/85.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. RIS H., MIRSKY A. E. Quantitative cytochemical determination of desoxyribonucleic acid with the Feulgen nucleal reaction. J Gen Physiol. 1949 Nov;33(2):125–146. doi: 10.1085/jgp.33.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rasch E. M., Barr H. J., Rasch R. W. The DNA content of sperm of Drosophila melanogaster. Chromosoma. 1971;33(1):1–18. doi: 10.1007/BF00326379. [DOI] [PubMed] [Google Scholar]
  25. Sandler L., Lindsley D. L. Meiotic behavior of tandem compound ring X chromosomes in Drosophila melanogaster. Genetics. 1967 Apr;55(4):645–671. doi: 10.1093/genetics/55.4.645. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES