Abstract
Dopachrome tautomerase (DCT; EC 5.3.3.12) catalyses the conversion of L-dopachrome into 5,6-dihydroxyindole-2-carboxylic acid in the mammalian eumelanogenic biosynthetic pathway. This enzyme, also named TRP2, belongs to a family of three metalloenzymes termed the tyrosinase-related proteins (TRPs). It is well known that tyrosinase has copper in its active site. However, the nature of the metal ion in the active site of DCT is under discussion. Whereas theoretical predictions based on similarity between the protein sequences of the TRPs suggest the presence of copper, the different inhibition pattern of DCT with some metal chelators compared with that of tyrosinase suggests that the nature of the metal ion could differ. Direct estimations of the metal content in purified DCT preparations show the presence of around 1.5 Zn atoms/molecule and the absence of copper. Apoenzyme preparation by treatment of DCT with cyanide or o-phenanthroline followed by reconstitution experiments of tautomerase activity in the presence of different ions confirmed that the metal cofactor for the DCT active site is zinc. Our results are consistent with Zn2+ chelation by the highly conserved histidine residues homologous to the histidines at the classical copper-binding sites in tyrosinase. This finding accounts for the reaction catalysed by DCT, i.e. a tautomerization, versus the copper-mediated oxidations catalysed by tyrosinase. Based on the predicted tetrahedrical coordination of the zinc ions in the enzyme active site, a molecular mechanism for the catalysis of L-dopachrome tautomerization is proposed. From the present data, the existence of additional ligands for metal ions other than zinc in the DCT molecule, such as the proposed cysteine iron-binding sites, cannot be completely ruled out. However, if such sites exist, they could be subsidiary binding sites, whose function would be likely to stabilize the protein.
Full Text
The Full Text of this article is available as a PDF (395.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aroca P., Garcia-Borron J. C., Solano F., Lozano J. A. Regulation of mammalian melanogenesis. I: Partial purification and characterization of a dopachrome converting factor: dopachrome tautomerase. Biochim Biophys Acta. 1990 Sep 14;1035(3):266–275. doi: 10.1016/0304-4165(90)90088-e. [DOI] [PubMed] [Google Scholar]
- Aroca P., Solano F., Garcia-Borrón J. C., Lozano J. A. Specificity of dopachrome tautomerase and inhibition by carboxylated indoles. Considerations on the enzyme active site. Biochem J. 1991 Jul 15;277(Pt 2):393–397. doi: 10.1042/bj2770393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aroca P., Solano F., García-Borrón J. C., Lozano J. A. A new spectrophotometric assay for dopachrome tautomerase. J Biochem Biophys Methods. 1990 Jun;21(1):35–46. doi: 10.1016/0165-022x(90)90043-c. [DOI] [PubMed] [Google Scholar]
- Ayora S., Götz F. Genetic and biochemical properties of an extracellular neutral metalloprotease from Staphylococcus hyicus subsp. hyicus. Mol Gen Genet. 1994 Feb;242(4):421–430. doi: 10.1007/BF00281792. [DOI] [PubMed] [Google Scholar]
- BOWNESS J. M., MORTON R. A. The association of zinc and other metals with melanin and a melanin-protein complex. Biochem J. 1953 Mar;53(4):620–626. doi: 10.1042/bj0530620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barber J. I., Townsend D., Olds D. P., King R. A. Dopachrome oxidoreductase: a new enzyme in the pigment pathway. J Invest Dermatol. 1984 Aug;83(2):145–149. doi: 10.1111/1523-1747.ep12263381. [DOI] [PubMed] [Google Scholar]
- Chakraborty A. K., Orlow S. J., Pawelek J. M. Evidence that dopachrome tautomerase is a ferrous iron-binding glycoprotein. FEBS Lett. 1992 May 11;302(2):126–128. doi: 10.1016/0014-5793(92)80421-c. [DOI] [PubMed] [Google Scholar]
- HARLEY-MASON J., BU'LOCK J. D. Synthesis of 5:6-dihydroxyindole derivatives; an oxido-reduction rearrangement catalyzed by zinc ions. Nature. 1950 Dec 16;166(4233):1036–1037. doi: 10.1038/1661036c0. [DOI] [PubMed] [Google Scholar]
- Halaban R., Moellmann G. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4809–4813. doi: 10.1073/pnas.87.12.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hearing V. J., Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J. 1991 Nov;5(14):2902–2909. [PubMed] [Google Scholar]
- Horcicko J., Borovanský J., Duchon J., Procházková B. Distribution of zinc and copper in pigmented tissues. Hoppe Seylers Z Physiol Chem. 1973 Feb;354(2):203–204. [PubMed] [Google Scholar]
- Jackson I. J., Chambers D. M., Tsukamoto K., Copeland N. G., Gilbert D. J., Jenkins N. A., Hearing V. A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J. 1992 Feb;11(2):527–535. doi: 10.1002/j.1460-2075.1992.tb05083.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson I. J. Molecular and developmental genetics of mouse coat color. Annu Rev Genet. 1994;28:189–217. doi: 10.1146/annurev.ge.28.120194.001201. [DOI] [PubMed] [Google Scholar]
- Jara J. R., Solano F., Garcia-Borron J. C., Aroca P., Lozano J. A. Regulation of mammalian melanogenesis. II: The role of metal cations. Biochim Biophys Acta. 1990 Sep 14;1035(3):276–285. doi: 10.1016/0304-4165(90)90089-f. [DOI] [PubMed] [Google Scholar]
- Jiménez-Cervantes C., Solano F., Kobayashi T., Urabe K., Hearing V. J., Lozano J. A., García-Borrón J. C. A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J Biol Chem. 1994 Jul 8;269(27):17993–18000. [PubMed] [Google Scholar]
- Kroumpouzos G., Urabe K., Kobayashi T., Sakai C., Hearing V. J. Functional analysis of the slaty gene product (TRP2) as dopachrome tautomerase and the effect of a point mutation on its catalytic function. Biochem Biophys Res Commun. 1994 Jul 29;202(2):1060–1068. doi: 10.1006/bbrc.1994.2036. [DOI] [PubMed] [Google Scholar]
- Leonard L. J., Townsend D., King R. A. Function of dopachrome oxidoreductase and metal ions in dopachrome conversion in the eumelanin pathway. Biochemistry. 1988 Aug 9;27(16):6156–6159. doi: 10.1021/bi00416a049. [DOI] [PubMed] [Google Scholar]
- Liu J., Lin S. X., Blochet J. E., Pézolet M., Lapointe J. The glutamyl-tRNA synthetase of Escherichia coli contains one atom of zinc essential for its native conformation and its catalytic activity. Biochemistry. 1993 Oct 26;32(42):11390–11396. doi: 10.1021/bi00093a016. [DOI] [PubMed] [Google Scholar]
- Odh G., Hindemith A., Rosengren A. M., Rosengren E., Rorsman H. Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole. Biochem Biophys Res Commun. 1993 Dec 15;197(2):619–624. doi: 10.1006/bbrc.1993.2524. [DOI] [PubMed] [Google Scholar]
- Oetting W. S., King R. A. Analysis of tyrosinase mutations associated with tyrosinase-related oculocutaneous albinism (OCA1). Pigment Cell Res. 1994 Oct;7(5):285–290. doi: 10.1111/j.1600-0749.1994.tb00629.x. [DOI] [PubMed] [Google Scholar]
- Orlow S. J., Osber M. P., Pawelek J. M. Synthesis and characterization of melanins from dihydroxyindole-2-carboxylic acid and dihydroxyindole. Pigment Cell Res. 1992 Sep;5(3):113–121. doi: 10.1111/j.1600-0749.1992.tb00007.x. [DOI] [PubMed] [Google Scholar]
- Palumbo A., d'Ischia M., Misuraca G., De Martino L., Prota G. A new dopachrome-rearranging enzyme from the ejected ink of the cuttlefish Sepia officinalis. Biochem J. 1994 May 1;299(Pt 3):839–844. doi: 10.1042/bj2990839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palumbo A., d'Ischia M., Misuraca G., Prota G. Effect of metal ions on the rearrangement of dopachrome. Biochim Biophys Acta. 1987 Aug 13;925(2):203–209. doi: 10.1016/0304-4165(87)90110-3. [DOI] [PubMed] [Google Scholar]
- Rüegg C., Lerch K. Cobalt tyrosinase: replacement of the binuclear copper of Neurospora tyrosinase by cobalt. Biochemistry. 1981 Mar 3;20(5):1256–1262. doi: 10.1021/bi00508a032. [DOI] [PubMed] [Google Scholar]
- Shibata T., Prota G., Mishima Y. Non-melanosomal regulatory factors in melanogenesis. J Invest Dermatol. 1993 Mar;100(3):274S–280S. [PubMed] [Google Scholar]
- Solano F., Martinez-Liarte J. H., Jiménez-Cervantes C., García-Borrón J. C., Lozano J. A. Dopachrome tautomerase is a zinc-containing enzyme. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1243–1250. doi: 10.1006/bbrc.1994.2596. [DOI] [PubMed] [Google Scholar]
- Sugumaran M., Semensi V. Quinone methide as a new intermediate in eumelanin biosynthesis. J Biol Chem. 1991 Apr 5;266(10):6073–6078. [PubMed] [Google Scholar]
- Tsukamoto K., Jackson I. J., Urabe K., Montague P. M., Hearing V. J. A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J. 1992 Feb;11(2):519–526. doi: 10.1002/j.1460-2075.1992.tb05082.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukamoto K., Jiménez M., Hearing V. J. The nature of tyrosinase isozymes. Pigment Cell Res. 1992;Suppl 2:84–89. doi: 10.1111/j.1600-0749.1990.tb00354.x. [DOI] [PubMed] [Google Scholar]
- Vachtenheim J., Duchon J., Matous B. A spectrophotometric assay for mammalian tyrosinase utilizing the formation of melanochrome from L-dopa. Anal Biochem. 1985 May 1;146(2):405–410. doi: 10.1016/0003-2697(85)90559-7. [DOI] [PubMed] [Google Scholar]
- Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
- Winder A. J., Harris H. New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur J Biochem. 1991 Jun 1;198(2):317–326. doi: 10.1111/j.1432-1033.1991.tb16018.x. [DOI] [PubMed] [Google Scholar]
- Yamashita M. M., Wesson L., Eisenman G., Eisenberg D. Where metal ions bind in proteins. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5648–5652. doi: 10.1073/pnas.87.15.5648. [DOI] [PMC free article] [PubMed] [Google Scholar]