Full Text
The Full Text of this article is available as a PDF (423.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- A'Bháird N. N., Ramsay R. R. Malonyl-CoA inhibition of peroxisomal carnitine octanoyltransferase. Biochem J. 1992 Sep 1;286(Pt 2):637–640. doi: 10.1042/bj2860637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Peak M., Beresford G., al-Habori M., Thomas T. H. The role of ion content and cell volume in insulin action. Biochem Soc Trans. 1994 May;22(2):516–522. doi: 10.1042/bst0220516. [DOI] [PubMed] [Google Scholar]
- Agius L., Peak M., al-Habori M. What determines the increase in liver cell volume in the fasted-to-fed transition: glycogen or insulin? Biochem J. 1991 Jun 15;276(Pt 3):843–845. doi: 10.1042/bj2760843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akesson B., Sundler R. Factors controlling the biosynthesis of individual phosphoglycerides in liver. Biochem Soc Trans. 1977;5(1):43–48. doi: 10.1042/bst0050043. [DOI] [PubMed] [Google Scholar]
- Alexander C. A., Hamilton R. L., Havel R. J. Subcellular localization of B apoprotein of plasma lipoproteins in rat liver. J Cell Biol. 1976 May;69(2):241–263. doi: 10.1083/jcb.69.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amatruda J. M., Chang C. L. The regulation of lipid synthesis in primary cultures of hepatocytes from nonketotic streptozotocin diabetic rats. Metabolism. 1983 Mar;32(3):224–229. doi: 10.1016/0026-0495(83)90186-5. [DOI] [PubMed] [Google Scholar]
- Assimacopoulos-Jeannet F., McCormack J. G., Prentki M., Jeanrenaud B., Denton R. M. Parallel increases in rates of fatty acid synthesis and in pyruvate dehydrogenase activity in isolated rat hepatocytes incubated with insulin. Biochim Biophys Acta. 1982 Jul 16;717(1):86–90. doi: 10.1016/0304-4165(82)90383-x. [DOI] [PubMed] [Google Scholar]
- Azain M. J., Fukuda N., Chao F. F., Yamamoto M., Ontko J. A. Contributions of fatty acid and sterol synthesis to triglyceride and cholesterol secretion by the perfused rat liver in genetic hyperlipemia and obesity. J Biol Chem. 1985 Jan 10;260(1):174–181. [PubMed] [Google Scholar]
- Azain M. J., Fukuda N., Chao F. F., Yamamoto M., Ontko J. A. Contributions of fatty acid and sterol synthesis to triglyceride and cholesterol secretion by the perfused rat liver in genetic hyperlipemia and obesity. J Biol Chem. 1985 Jan 10;260(1):174–181. [PubMed] [Google Scholar]
- Barber E. F., Handlogten M. E., Vida T. A., Kilberg M. S. Neutral amino acid transport in hepatocytes isolated from streptozotocin-induced diabetic rats. J Biol Chem. 1982 Dec 25;257(24):14960–14967. [PubMed] [Google Scholar]
- Bartlett S. M., Gibbons G. F. Short- and longer-term regulation of very-low-density lipoprotein secretion by insulin, dexamethasone and lipogenic substrates in cultured hepatocytes. A biphasic effect of insulin. Biochem J. 1988 Jan 1;249(1):37–43. doi: 10.1042/bj2490037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bates E. J., Saggerson D. A selective decrease in mitochondrial glycerol phosphate acyltransferase activity in livers from streptozotocin-diabetic rats. FEBS Lett. 1977 Dec 15;84(2):229–232. doi: 10.1016/0014-5793(77)80694-7. [DOI] [PubMed] [Google Scholar]
- Bates E. J., Topping D. L., Sooranna S. P., Saggerson D., Mayes P. A. Acute effects of insulin on glycerol phosphate acyl transferase activity, ketogenesis and serum free fatty acid concentration in perfused rat liver. FEBS Lett. 1977 Dec 15;84(2):225–228. doi: 10.1016/0014-5793(77)80693-5. [DOI] [PubMed] [Google Scholar]
- Bhuiyan A. K., Murthy M. S., Pande S. V. Some properties of the malonyl-CoA sensitive carnitine long/medium chain acyltransferase activities of peroxisomes and microsomes of rat liver. Biochem Mol Biol Int. 1994 Oct;34(3):493–503. [PubMed] [Google Scholar]
- Björnsson O. G., Duerden J. M., Bartlett S. M., Sparks J. D., Sparks C. E., Gibbons G. F. The role of pancreatic hormones in the regulation of lipid storage, oxidation and secretion in primary cultures of rat hepatocytes. Short- and long-term effects. Biochem J. 1992 Jan 15;281(Pt 2):381–386. doi: 10.1042/bj2810381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borthwick A. C., Edgell N. J., Denton R. M. Protein-serine kinase from rat epididymal adipose tissue which phosphorylates and activates acetyl-CoA carboxylase. Possible role in insulin action. Biochem J. 1990 Sep 15;270(3):795–801. doi: 10.1042/bj2700795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borén J., Graham L., Wettesten M., Scott J., White A., Olofsson S. O. The assembly and secretion of ApoB 100-containing lipoproteins in Hep G2 cells. ApoB 100 is cotranslationally integrated into lipoproteins. J Biol Chem. 1992 May 15;267(14):9858–9867. [PubMed] [Google Scholar]
- Borén J., Rustaeus S., Olofsson S. O. Studies on the assembly of apolipoprotein B-100- and B-48-containing very low density lipoproteins in McA-RH7777 cells. J Biol Chem. 1994 Oct 14;269(41):25879–25888. [PubMed] [Google Scholar]
- Borén J., Wettesten M., Rustaeus S., Andersson M., Olofsson S. O. The assembly and secretion of apoB-100-containing lipoproteins. Biochem Soc Trans. 1993 May;21(2):487–493. doi: 10.1042/bst0210487. [DOI] [PubMed] [Google Scholar]
- Borén J., Wettesten M., Sjöberg A., Thorlin T., Bondjers G., Wiklund O., Olofsson S. O. The assembly and secretion of apoB 100 containing lipoproteins in Hep G2 cells. Evidence for different sites for protein synthesis and lipoprotein assembly. J Biol Chem. 1990 Jun 25;265(18):10556–10564. [PubMed] [Google Scholar]
- Bremer J. The effect of fasting on the activity of liver carnitine palmitoyltransferase and its inhibition by malonyl-CoA. Biochim Biophys Acta. 1981 Sep 24;665(3):628–631. doi: 10.1016/0005-2760(81)90282-4. [DOI] [PubMed] [Google Scholar]
- Brindle N. P., Zammit V. A., Pogson C. I. Regulation of carnitine palmitoyltransferase activity by malonyl-CoA in mitochondria from sheep liver, a tissue with a low capacity for fatty acid synthesis. Biochem J. 1985 Nov 15;232(1):177–182. doi: 10.1042/bj2320177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broadway N. M., Saggerson E. D. Solubilization and separation of two distinct carnitine acyltransferases from hepatic microsomes: characterization of the malonyl-CoA-sensitive enzyme. Biochem J. 1995 Sep 15;310(Pt 3):989–995. doi: 10.1042/bj3100989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byrne C. D., Brindle N. P., Wang T. W., Hales C. N. Interaction of non-esterified fatty acid and insulin in control of triacylglycerol secretion by Hep G2 cells. Biochem J. 1991 Nov 15;280(Pt 1):99–104. doi: 10.1042/bj2800099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casals N., Roca N., Guerrero M., Gil-Gómez G., Ayté J., Ciudad C. J., Hegardt F. G. Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis. Biochem J. 1992 Apr 1;283(Pt 1):261–264. doi: 10.1042/bj2830261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatterjee B., Song C. S., Kim J. M., Roy A. K. Cloning, sequencing, and regulation of rat liver carnitine octanoyltransferase: transcriptional stimulation of the enzyme during peroxisome proliferation. Biochemistry. 1988 Dec 13;27(25):9000–9006. doi: 10.1021/bi00425a018. [DOI] [PubMed] [Google Scholar]
- Chung C. D., Bieber L. L. Properties of the medium chain/long chain carnitine acyltransferase purified from rat liver microsomes. J Biol Chem. 1993 Feb 25;268(6):4519–4524. [PubMed] [Google Scholar]
- Cohn J. S., Wagner D. A., Cohn S. D., Millar J. S., Schaefer E. J. Measurement of very low density and low density lipoprotein apolipoprotein (Apo) B-100 and high density lipoprotein Apo A-I production in human subjects using deuterated leucine. Effect of fasting and feeding. J Clin Invest. 1990 Mar;85(3):804–811. doi: 10.1172/JCI114507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coleman R., Bell R. M. Evidence that biosynthesis of phosphatidylethanolamine, phosphatidylcholine, and triacylglycerol occurs on the cytoplasmic side of microsomal vesicles. J Cell Biol. 1978 Jan;76(1):245–253. doi: 10.1083/jcb.76.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook G. A., King M. T., Veech R. L. Ketogenesis and malonyl coenzyme A content of isolated rat hepatocytes. J Biol Chem. 1978 Apr 25;253(8):2529–2531. [PubMed] [Google Scholar]
- Cook G. A., Otto D. A., Cornell N. W. Differential inhibition of ketogenesis by malonyl-CoA in mitochondria from fed and starved rats. Biochem J. 1980 Dec 15;192(3):955–958. doi: 10.1042/bj1920955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dashti N. The effect of low density lipoproteins, cholesterol, and 25-hydroxycholesterol on apolipoprotein B gene expression in HepG2 cells. J Biol Chem. 1992 Apr 5;267(10):7160–7169. [PubMed] [Google Scholar]
- Dashti N., Williams D. L., Alaupovic P. Effects of oleate and insulin on the production rates and cellular mRNA concentrations of apolipoproteins in HepG2 cells. J Lipid Res. 1989 Sep;30(9):1365–1373. [PubMed] [Google Scholar]
- Davis R. A., Boogaerts J. R., Borchardt R. A., Malone-McNeal M., Archambault-Schexnayder J. Intrahepatic assembly of very low density lipoproteins. Varied synthetic response of individual apolipoproteins to fasting. J Biol Chem. 1985 Nov 15;260(26):14137–14144. [PubMed] [Google Scholar]
- Derrick J. P., Ramsay R. R. L-carnitine acyltransferase in intact peroxisomes is inhibited by malonyl-CoA. Biochem J. 1989 Sep 15;262(3):801–806. doi: 10.1042/bj2620801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon J. L., Ginsberg H. N. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. J Lipid Res. 1993 Feb;34(2):167–179. [PubMed] [Google Scholar]
- Duerden J. M., Bartlett S. M., Gibbons G. F. Long-term maintenance of high rates of very-low-density-lipoprotein secretion in hepatocyte cultures. A model for studying the direct effects of insulin and insulin deficiency in vitro. Biochem J. 1989 Nov 1;263(3):937–943. doi: 10.1042/bj2630937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duerden J. M., Gibbons G. F. Restoration in vitro of normal rates of very-low-density lipoprotein triacylglycerol and apoprotein B secretion in hepatocyte cultures from diabetic rats. Biochem J. 1993 Aug 15;294(Pt 1):167–171. doi: 10.1042/bj2940167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duerden J. M., Gibbons G. F. Storage, mobilization and secretion of cytosolic triacylglycerol in hepatocyte cultures. The role of insulin. Biochem J. 1990 Dec 15;272(3):583–587. doi: 10.1042/bj2720583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durrington P. N., Newton R. S., Weinstein D. B., Steinberg D. Effects of insulin and glucose on very low density lipoprotein triglyceride secretion by cultured rat hepatocytes. J Clin Invest. 1982 Jul;70(1):63–73. doi: 10.1172/JCI110604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Easom R. A., Zammit V. A. Effects of diabetes on the expressed and total activities of 3-hydroxy-3-methylglutaryl-CoA reductase in rat liver in vivo. Reversal by insulin treatment. Biochem J. 1985 Sep 15;230(3):747–752. doi: 10.1042/bj2300747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elayan I. M., Cartmill D. C., Eckersell C. B., Wilkin J., Winder W. W. Malonyl-CoA in skeletal muscle and liver of streptozotocin-diabetic rats. Proc Soc Exp Biol Med. 1991 Oct;198(1):569–571. doi: 10.3181/00379727-198-43290. [DOI] [PubMed] [Google Scholar]
- Emmison N., Zammit V. A., Agius L. Triacylglycerol accumulation and secretion in hepatocyte cultures. Effects of insulin, albumin and Triton WR 1339. Biochem J. 1992 Jul 15;285(Pt 2):655–660. doi: 10.1042/bj2850655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esser V., Britton C. H., Weis B. C., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. J Biol Chem. 1993 Mar 15;268(8):5817–5822. [PubMed] [Google Scholar]
- Farese R. V., Standaert M. L., Yamada K., Huang L. C., Zhang C., Cooper D. R., Wang Z., Yang Y., Suzuki S., Toyota T. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11040–11044. doi: 10.1073/pnas.91.23.11040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrell S. O., Bieber L. L. Carnitine octanoyltransferase of mouse liver peroxisomes: properties and effect of hypolipidemic drugs. Arch Biochem Biophys. 1983 Apr 1;222(1):123–132. doi: 10.1016/0003-9861(83)90509-x. [DOI] [PubMed] [Google Scholar]
- Francone O. L., Kalopissis A. D., Griffaton G. Contribution of cytoplasmic storage triacylglycerol to VLDL-triacylglycerol in isolated rat hepatocytes. Biochim Biophys Acta. 1989 Mar 14;1002(1):28–36. doi: 10.1016/0005-2760(89)90060-x. [DOI] [PubMed] [Google Scholar]
- Fukuda N., Azain M. J., Ontko J. A. Altered hepatic metabolism of free fatty acids underlying hypersecretion of very low density lipoproteins in the genetically obese Zucker rats. J Biol Chem. 1982 Dec 10;257(23):14066–14072. [PubMed] [Google Scholar]
- Gibbons G. F., Bartlett S. M., Sparks C. E., Sparks J. D. Extracellular fatty acids are not utilized directly for the synthesis of very-low-density lipoprotein in primary cultures of rat hepatocytes. Biochem J. 1992 Nov 1;287(Pt 3):749–753. doi: 10.1042/bj2870749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons G. F. Hyperlipidaemia of diabetes. Clin Sci (Lond) 1986 Nov;71(5):477–486. doi: 10.1042/cs0710477. [DOI] [PubMed] [Google Scholar]
- Gibbons G. F., Khurana R., Odwell A., Seelaender M. C. Lipid balance in HepG2 cells: active synthesis and impaired mobilization. J Lipid Res. 1994 Oct;35(10):1801–1808. [PubMed] [Google Scholar]
- Glaumann H., Bergstrand A., Ericsson J. L. Studies on the synthesis and intracellular transport of lipoprotein particles in rat liver. J Cell Biol. 1975 Feb;64(2):356–377. doi: 10.1083/jcb.64.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grantham B. D., Zammit V. A. Restoration of the properties of carnitine palmitoyltransferase I in liver mitochondria during re-feeding of starved rats. Biochem J. 1986 Oct 15;239(2):485–488. doi: 10.1042/bj2390485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grantham B. D., Zammit V. A. Role of carnitine palmitoyltransferase I in the regulation of hepatic ketogenesis during the onset and reversal of chronic diabetes. Biochem J. 1988 Jan 15;249(2):409–414. doi: 10.1042/bj2490409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregg R. E., Wetterau J. R. The molecular basis of abetalipoproteinemia. Curr Opin Lipidol. 1994 Apr;5(2):81–86. doi: 10.1097/00041433-199404000-00003. [DOI] [PubMed] [Google Scholar]
- Groener J. E., van Golde L. M. Utilization of exogenously added and endogenously synthesized fatty acids for glycerolipids synthesis in isolated rat hepatocytes. Biochim Biophys Acta. 1978 Apr 28;529(1):88–95. doi: 10.1016/0005-2760(78)90106-6. [DOI] [PubMed] [Google Scholar]
- Guzmán M., Velasco G., Castro J., Zammit V. A. Inhibition of carnitine palmitoyltransferase I by hepatocyte swelling. FEBS Lett. 1994 May 16;344(2-3):239–241. doi: 10.1016/0014-5793(94)00405-6. [DOI] [PubMed] [Google Scholar]
- Haagsman H. P., Van Golde L. M. Synthesis and secretion of very low density lipoproteins by isolated rat hepatocytes in suspension: role of diacylglycerol acyltransferase. Arch Biochem Biophys. 1981 May;208(2):395–402. doi: 10.1016/0003-9861(81)90524-5. [DOI] [PubMed] [Google Scholar]
- Haagsman H. P., de Haas C. G., Geelen M. J., van Golde L. M. Regulation of triacylglycerol synthesis in the liver. Modulation of diacylglycerol acyltransferase activity in vitro. J Biol Chem. 1982 Sep 25;257(18):10593–10598. [PubMed] [Google Scholar]
- Hamilton R. L., Havel R. J. Is microsomal triglyceride transfer protein the missing link in abetalipoproteinemia? Hepatology. 1993 Aug;18(2):460–463. doi: 10.1002/hep.1840180235. [DOI] [PubMed] [Google Scholar]
- Hardie D. G. Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog Lipid Res. 1989;28(2):117–146. doi: 10.1016/0163-7827(89)90010-6. [DOI] [PubMed] [Google Scholar]
- Haude W., Wagner H., Theil S., Haase H., Hünicke G., Goetze E. Bestimmung der Umsätze und Flussraten von Fettsäuren und Cholesterin in Serum und Leber der Ratte mit Hilfe der mathematischen Simulierung von Isotopenverdünnungskurven am Analogrechner. Acta Biol Med Ger. 1972;28(6):963–975. [PubMed] [Google Scholar]
- Havel R. J. Postprandial hyperlipidemia and remnant lipoproteins. Curr Opin Lipidol. 1994 Apr;5(2):102–109. doi: 10.1097/00041433-199404000-00006. [DOI] [PubMed] [Google Scholar]
- Haystead T. A., Hardie D. G. Evidence that activation of acetyl-CoA carboxylase by insulin in adipocytes is mediated by a low-Mr effector and not by increased phosphorylation. Biochem J. 1986 Nov 15;240(1):99–106. doi: 10.1042/bj2400099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins J. A. Evidence that during very low density lipoprotein assembly in rat hepatocytes most of the triacylglycerol and phospholipid are packaged with apolipoprotein B in the Golgi complex. FEBS Lett. 1988 May 23;232(2):405–408. doi: 10.1016/0014-5793(88)80780-4. [DOI] [PubMed] [Google Scholar]
- Holder J. C., Zammit V. A., Robinson D. S. The preferential uptake of very-low-density lipoprotein cholesteryl ester by rat liver in vivo. Biochem J. 1990 Dec 15;272(3):735–741. doi: 10.1042/bj2720735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holness M. J., Sugden M. C. Comparison of tissue pyruvate dehydrogenase activities on re-feeding rats fed ad libitum or meal-fed rats with a chow-diet meal. Biochem J. 1989 Aug 15;262(1):321–325. doi: 10.1042/bj2620321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard B. V., Reitman J. S., Vasquez B., Zech L. Very-low-density lipoprotein triglyceride metabolism in non-insulin-dependent diabetes mellitus. Relationship to plasma insulin and free fatty acids. Diabetes. 1983 Mar;32(3):271–276. doi: 10.2337/diab.32.3.271. [DOI] [PubMed] [Google Scholar]
- Huang G., Lee D. M., Singh S. Identification of the thiol ester linked lipids in apolipoprotein B. Biochemistry. 1988 Mar 8;27(5):1395–1400. doi: 10.1021/bi00405a001. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Schliess F. Cell volume and hepatocellular function. J Hepatol. 1995 Jan;22(1):94–100. doi: 10.1016/0168-8278(95)80266-5. [DOI] [PubMed] [Google Scholar]
- Ide H., Weinhold P. A. Cholinephosphotransferase in rat lung. In vitro formation of dipalmitoylphosphatidylcholine and general lack of selectivity using endogenously generated diacylglycerol. J Biol Chem. 1982 Dec 25;257(24):14926–14931. [PubMed] [Google Scholar]
- Jackson T. K., Salhanick A. I., Elovson J., Deichman M. L., Amatruda J. M. Insulin regulates apolipoprotein B turnover and phosphorylation in rat hepatocytes. J Clin Invest. 1990 Nov;86(5):1746–1751. doi: 10.1172/JCI114900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamil H., Dickson J. K., Jr, Chu C. H., Lago M. W., Rinehart J. K., Biller S. A., Gregg R. E., Wetterau J. R. Microsomal triglyceride transfer protein. Specificity of lipid binding and transport. J Biol Chem. 1995 Mar 24;270(12):6549–6554. doi: 10.1074/jbc.270.12.6549. [DOI] [PubMed] [Google Scholar]
- Jamil H., Utal A. K., Vance D. E. Evidence that cyclic AMP-induced inhibition of phosphatidylcholine biosynthesis is caused by a decrease in cellular diacylglycerol levels in cultured rat hepatocytes. J Biol Chem. 1992 Jan 25;267(3):1752–1760. [PubMed] [Google Scholar]
- Kalmar G. B., Kay R. J., Lachance A., Aebersold R., Cornell R. B. Cloning and expression of rat liver CTP: phosphocholine cytidylyltransferase: an amphipathic protein that controls phosphatidylcholine synthesis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6029–6033. doi: 10.1073/pnas.87.16.6029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaloyianni M., Freedland R. A. Effect of diabetes and time after in vivo insulin administration on ketogenesis and gluconeogenesis in isolated rat hepatocytes. Int J Biochem. 1990;22(2):159–164. doi: 10.1016/0020-711x(90)90178-6. [DOI] [PubMed] [Google Scholar]
- Kazumi T., Vranic M., Steiner G. Changes in very low density lipoprotein particle size and production in response to sucrose feeding and hyperinsulinemia. Endocrinology. 1985 Sep;117(3):1145–1150. doi: 10.1210/endo-117-3-1145. [DOI] [PubMed] [Google Scholar]
- Khan B., Wilcox H. G., Heimberg M. Cholesterol is required for secretion of very-low-density lipoprotein by rat liver. Biochem J. 1989 Mar 15;258(3):807–816. doi: 10.1042/bj2580807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolodziej M. P., Crilly P. J., Corstorphine C. G., Zammit V. A. Development and characterization of a polyclonal antibody against rat liver mitochondrial overt carnitine palmitoyltransferase (CPT I). Distinction of CPT I from CPT II and of isoforms of CPT I in different tissues. Biochem J. 1992 Mar 1;282(Pt 2):415–421. doi: 10.1042/bj2820415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolodziej M. P., Zammit V. A. Mature carnitine palmitoyltransferase I retains the N-terminus of the nascent protein in rat liver. FEBS Lett. 1993 Aug 2;327(3):294–296. doi: 10.1016/0014-5793(93)81007-m. [DOI] [PubMed] [Google Scholar]
- Kolodziej M. P., Zammit V. A. Sensitivity of inhibition of rat liver mitochondrial outer-membrane carnitine palmitoyltransferase by malonyl-CoA to chemical- and temperature-induced changes in membrane fluidity. Biochem J. 1990 Dec 1;272(2):421–425. doi: 10.1042/bj2720421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondrup J., Damgaard S. E., Fleron P. Metabolism of palmitate in perfused rat liver. Computer models of subcellular triacylglycerol metabolism. Biochem J. 1979 Oct 15;184(1):73–81. doi: 10.1042/bj1840073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosykh V. A., Preobrazhensky S. N., Fuki I. V., Zaikina O. E., Tsibulsky V. P., Repin V. S., Smirnov V. N. Cholesterol can stimulate secretion of apolipoprotein B by cultured human hepatocytes. Biochim Biophys Acta. 1985 Oct 2;836(3):385–389. doi: 10.1016/0005-2760(85)90143-2. [DOI] [PubMed] [Google Scholar]
- Laker M. E., Mayes P. A. Investigations into the direct effects of insulin on hepatic ketogenesis, lipoprotein secretion and pyruvate dehydrogenase activity. Biochim Biophys Acta. 1984 Sep 12;795(2):427–430. doi: 10.1016/0005-2760(84)90094-8. [DOI] [PubMed] [Google Scholar]
- Laker M. E., Mayes P. A. Investigations into the direct effects of insulin on hepatic ketogenesis, lipoprotein secretion and pyruvate dehydrogenase activity. Biochim Biophys Acta. 1984 Sep 12;795(2):427–430. doi: 10.1016/0005-2760(84)90094-8. [DOI] [PubMed] [Google Scholar]
- Lewis G. F., Uffelman K. D., Szeto L. W., Weller B., Steiner G. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J Clin Invest. 1995 Jan;95(1):158–166. doi: 10.1172/JCI117633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lilly K., Bugaisky G. E., Umeda P. K., Bieber L. L. The medium-chain carnitine acyltransferase activity associated with rat liver microsomes is malonyl-CoA sensitive. Arch Biochem Biophys. 1990 Jul;280(1):167–174. doi: 10.1016/0003-9861(90)90532-4. [DOI] [PubMed] [Google Scholar]
- McGarry J. D. Disordered metabolism in diabetes: have we underemphasized the fat component? J Cell Biochem. 1994;55 (Suppl):29–38. doi: 10.1002/jcb.240550005. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Importance of experimental conditions in evaluating the malonyl-CoA sensitivity of liver carnitine acyltransferase. Studies with fed and starved rats. Biochem J. 1981 Nov 15;200(2):217–223. doi: 10.1042/bj2000217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarry J. D., Mannaerts G. P., Foster D. W. Characteristics of fatty acid oxidation in rat liver homogenates and the inhibitory effect of malonyl-CoA. Biochim Biophys Acta. 1978 Sep 28;530(3):305–313. doi: 10.1016/0005-2760(78)90150-9. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Meier J. M., Foster D. W. The effects of starvation and refeeding on carbohydrate and lipid metabolism in vivo and in the perfused rat liver. The relationship between fatty acid oxidation and esterification in the regulation of ketogenesis. J Biol Chem. 1973 Jan 10;248(1):270–278. [PubMed] [Google Scholar]
- McGivan J. D., Pastor-Anglada M. Regulatory and molecular aspects of mammalian amino acid transport. Biochem J. 1994 Apr 15;299(Pt 2):321–334. doi: 10.1042/bj2990321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moir A. M., Park B. S., Zammit V. A. Quantification in vivo of the effects of different types of dietary fat on the loci of control involved in hepatic triacylglycerol secretion. Biochem J. 1995 Jun 1;308(Pt 2):537–542. doi: 10.1042/bj3080537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moir A. M., Zammit V. A. Acute meal-induced changes in hepatic glycerolipid metabolism are unimpaired in severely diabetic rats: implications for the role of insulin. FEBS Lett. 1995 Aug 21;370(3):255–258. doi: 10.1016/0014-5793(95)00838-z. [DOI] [PubMed] [Google Scholar]
- Moir A. M., Zammit V. A. Changes in the properties of cytosolic acetyl-CoA carboxylase studied in cold-clamped liver samples from fed, starved and starved-refed rats. Biochem J. 1990 Dec 1;272(2):511–517. doi: 10.1042/bj2720511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moir A. M., Zammit V. A. Effects of insulin treatment of diabetic rats on hepatic partitioning of fatty acids between oxidation and esterification, phospholipid and acylglycerol synthesis, and on the fractional rate of secretion of triacylglycerol in vivo. Biochem J. 1994 Nov 15;304(Pt 1):177–182. doi: 10.1042/bj3040177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moir A. M., Zammit V. A. Insulin-independent and extremely rapid switch in the partitioning of hepatic fatty acids from oxidation to esterification in starved-refed diabetic rats. Possible roles for changes in cell pH and volume. Biochem J. 1995 Feb 1;305(Pt 3):953–958. doi: 10.1042/bj3050953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moir A. M., Zammit V. A. Monitoring of changes in hepatic fatty acid and glycerolipid metabolism during the starved-to-fed transition in vivo. Studies on awake, unrestrained rats. Biochem J. 1993 Jan 1;289(Pt 1):49–55. doi: 10.1042/bj2890049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moir A. M., Zammit V. A. Rapid switch of hepatic fatty acid metabolism from oxidation to esterification during diurnal feeding of meal-fed rats correlates with changes in the properties of acetyl-CoA carboxylase, but not of carnitine palmitoyltransferase I. Biochem J. 1993 Apr 1;291(Pt 1):241–246. doi: 10.1042/bj2910241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moir A. M., Zammit V. A. Selective labelling of hepatic fatty acids in vivo. Studies on the synthesis and secretion of glycerolipids in the rat. Biochem J. 1992 Apr 1;283(Pt 1):145–149. doi: 10.1042/bj2830145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukherjee C., Jungas R. L. Activation of pyruvate dehydrogenase in adipose tissue by insulin. Evidence for an effect of insulin on pyruvate dehydrogenase phosphate phosphatase. Biochem J. 1975 May;148(2):229–235. doi: 10.1042/bj1480229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munday M. R., Milic M. R., Takhar S., Holness M. J., Sugden M. C. The short-term regulation of hepatic acetyl-CoA carboxylase during starvation and re-feeding in the rat. Biochem J. 1991 Dec 15;280(Pt 3):733–737. doi: 10.1042/bj2800733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murthy M. S., Bieber L. L. Purification of the medium-chain/long-chain (COT/CPT) carnitine acyltransferase of rat liver microsomes. Protein Expr Purif. 1992 Feb;3(1):75–79. doi: 10.1016/1046-5928(92)90059-6. [DOI] [PubMed] [Google Scholar]
- Murthy M. S., Pande S. V. A stress-regulated protein, GRP58, a member of thioredoxin superfamily, is a carnitine palmitoyltransferase isoenzyme. Biochem J. 1994 Nov 15;304(Pt 1):31–34. doi: 10.1042/bj3040031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murthy M. S., Pande S. V. Carnitine medium/long chain acyltransferase of microsomes seems to be the previously cloned approximately 54 kDa protein of unknown function. Mol Cell Biochem. 1993 May 26;122(2):133–138. doi: 10.1007/BF01076097. [DOI] [PubMed] [Google Scholar]
- Murthy M. S., Pande S. V. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A. 1987 Jan;84(2):378–382. doi: 10.1073/pnas.84.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murthy M. S., Pande S. V. Malonyl-CoA-sensitive and -insensitive carnitine palmitoyltransferase activities of microsomes are due to different proteins. J Biol Chem. 1994 Jul 15;269(28):18283–18286. [PubMed] [Google Scholar]
- Murthy M. S., Pande S. V. Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J. 1987 Dec 15;248(3):727–733. doi: 10.1042/bj2480727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mynatt R. L., Greenhaw J. J., Cook G. A. Cholate extracts of mitochondrial outer membranes increase inhibition by malonyl-CoA of carnitine palmitoyltransferase-I by a mechanism involving phospholipids. Biochem J. 1994 May 1;299(Pt 3):761–767. doi: 10.1042/bj2990761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ontko J. A., Johns M. L. Evaluation of malonyl-CoA in the regulation of long-chain fatty acid oxidation in the liver. Evidence for an unidentified regulatory component of the system. Biochem J. 1980 Dec 15;192(3):959–962. doi: 10.1042/bj1920959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park E. A., Mynatt R. L., Cook G. A., Kashfi K. Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I. Biochem J. 1995 Sep 15;310(Pt 3):853–858. doi: 10.1042/bj3100853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patsch W., Franz S., Schonfeld G. Role of insulin in lipoprotein secretion by cultured rat hepatocytes. J Clin Invest. 1983 May;71(5):1161–1174. doi: 10.1172/JCI110865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peak M., al-Habori M., Agius L. Regulation of glycogen synthesis and glycolysis by insulin, pH and cell volume. Interactions between swelling and alkalinization in mediating the effects of insulin. Biochem J. 1992 Mar 15;282(Pt 3):797–805. doi: 10.1042/bj2820797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pease R. J., Harrison G. B., Scott J. Cotranslocational insertion of apolipoprotein B into the inner leaflet of the endoplasmic reticulum. Nature. 1991 Oct 3;353(6343):448–450. doi: 10.1038/353448a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potts J. L., Fisher R. M., Humphreys S. M., Coppack S. W., Gibbons G. F., Frayn K. N. Peripheral triacylglycerol extraction in the fasting and post-prandial states. Clin Sci (Lond) 1991 Nov;81(5):621–626. doi: 10.1042/cs0810621. [DOI] [PubMed] [Google Scholar]
- Prip-Buus C., Pegorier J. P., Duee P. H., Kohl C., Girard J. Evidence that the sensitivity of carnitine palmitoyltransferase I to inhibition by malonyl-CoA is an important site of regulation of hepatic fatty acid oxidation in the fetal and newborn rabbit. Perinatal development and effects of pancreatic hormones in cultured rabbit hepatocytes. Biochem J. 1990 Jul 15;269(2):409–415. doi: 10.1042/bj2690409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prip-Buus C., Thumelin S., Chatelain F., Pegorier J. P., Girard J. Hormonal and nutritional control of liver fatty acid oxidation and ketogenesis during development. Biochem Soc Trans. 1995 Aug;23(3):500–506. doi: 10.1042/bst0230500. [DOI] [PubMed] [Google Scholar]
- Pénicaud L., Robin D., Robin P., Kandé J., Picon L., Girard J., Ferré P. Effect of insulin on the properties of liver carnitine palmitoyltransferase in the starved rat: assessment by the euglycemic hyperinsulinemic clamp. Metabolism. 1991 Aug;40(8):873–876. doi: 10.1016/0026-0495(91)90018-r. [DOI] [PubMed] [Google Scholar]
- Quant P. A. Activity and expression of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the starved-to-fed transition. Biochem Soc Trans. 1990 Oct;18(5):994–995. doi: 10.1042/bst0180994. [DOI] [PubMed] [Google Scholar]
- Quant P. A. The role of mitochondrial HMG-CoA synthase in regulation of ketogenesis. Essays Biochem. 1994;28:13–25. [PubMed] [Google Scholar]
- Ramsay R. R. Carnitine and its role in acyl group metabolism. Essays Biochem. 1994;28:47–61. [PubMed] [Google Scholar]
- Randle P. J., Kerbey A. L., Espinal J. Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab Rev. 1988 Nov;4(7):623–638. doi: 10.1002/dmr.5610040702. [DOI] [PubMed] [Google Scholar]
- Reaven G. M., Chen Y. D. Role of insulin in regulation of lipoprotein metabolism in diabetes. Diabetes Metab Rev. 1988 Nov;4(7):639–652. doi: 10.1002/dmr.5610040703. [DOI] [PubMed] [Google Scholar]
- Reaven G. M., Mondon C. E. Effect of in vivo plasma insulin levels on the relationship between perfusate free fatty acid concentration and triglyceride secretion by perfused rat livers. Horm Metab Res. 1984 May;16(5):230–232. doi: 10.1055/s-2007-1014753. [DOI] [PubMed] [Google Scholar]
- Reaven G. M. The fourth musketeer--from Alexandre Dumas to Claude Bernard. Diabetologia. 1995 Jan;38(1):3–13. doi: 10.1007/BF02369347. [DOI] [PubMed] [Google Scholar]
- Robinson I. N., Zammit V. A. Sensitivity of carnitine acyltransferase I to malonly-CoA inhibition in isolated rat liver mitochondria is quantitatively related to hepatic malonyl-CoA concentration in vivo. Biochem J. 1982 Jul 15;206(1):177–179. doi: 10.1042/bj2060177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rusiñol A., Verkade H., Vance J. E. Assembly of rat hepatic very low density lipoproteins in the endoplasmic reticulum. J Biol Chem. 1993 Feb 15;268(5):3555–3562. [PubMed] [Google Scholar]
- Saggerson E. D., Carpenter C. A., Tselentis B. S. Effects of thyroidectomy and starvation on the activity and properties of hepatic carnitine palmitoyltransferase. Biochem J. 1982 Dec 15;208(3):667–672. doi: 10.1042/bj2080667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sallach S. M., Adeli K. Intracellular degradation of apolipoprotein B generates an N-terminal 70 kDa fragment in the endoplasmic reticulum. Biochim Biophys Acta. 1995 Feb 16;1265(1):29–32. doi: 10.1016/0167-4889(95)00239-o. [DOI] [PubMed] [Google Scholar]
- Samson M., Fehlmann M., Dolais-Kitabgi J., Freychet P. Amino acid transport in isolated hepatocytes from streptozotocin-diabetic rats. Diabetes. 1980 Dec;29(12):996–1000. doi: 10.2337/diab.29.12.996. [DOI] [PubMed] [Google Scholar]
- Sanghera J. S., Vance D. E. CTP:phosphocholine cytidylyltransferase is a substrate for cAMP-dependent protein kinase in vitro. J Biol Chem. 1989 Jan 15;264(2):1215–1223. [PubMed] [Google Scholar]
- Schneeman B. O., Kotite L., Todd K. M., Havel R. J. Relationships between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat-containing meal in normolipidemic humans. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2069–2073. doi: 10.1073/pnas.90.5.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selawry H., Gutman R., Fink G., Recant L. The effect of starvation on tissue adenosine 3'-5' monophosphate levels. Biochem Biophys Res Commun. 1973 Mar 5;51(1):198–204. doi: 10.1016/0006-291x(73)90528-7. [DOI] [PubMed] [Google Scholar]
- Serra D., Casals N., Asins G., Royo T., Ciudad C. J., Hegardt F. G. Regulation of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase protein by starvation, fat feeding, and diabetes. Arch Biochem Biophys. 1993 Nov 15;307(1):40–45. doi: 10.1006/abbi.1993.1557. [DOI] [PubMed] [Google Scholar]
- Singh B., Stakkestad J. A., Bremer J., Borrebaek B. Determination of malonyl-coenzyme A in rat heart, kidney, and liver: a comparison between acetyl-coenzyme A and butyryl-coenzyme A as fatty acid synthase primers in the assay procedure. Anal Biochem. 1984 Apr;138(1):107–111. doi: 10.1016/0003-2697(84)90776-0. [DOI] [PubMed] [Google Scholar]
- Sniderman A. D., Cianflone K. Substrate delivery as a determinant of hepatic apoB secretion. Arterioscler Thromb. 1993 May;13(5):629–636. doi: 10.1161/01.atv.13.5.629. [DOI] [PubMed] [Google Scholar]
- Sparks C. E., Sparks J. D., Bolognino M., Salhanick A., Strumph P. S., Amatruda J. M. Insulin effects on apolipoprotein B lipoprotein synthesis and secretion by primary cultures of rat hepatocytes. Metabolism. 1986 Dec;35(12):1128–1136. doi: 10.1016/0026-0495(86)90026-0. [DOI] [PubMed] [Google Scholar]
- Sparks J. D., Sparks C. E., Bolognino M., Roncone A. M., Jackson T. K., Amatruda J. M. Effects of nonketotic streptozotocin diabetes on apolipoprotein B synthesis and secretion by primary cultures of rat hepatocytes. J Clin Invest. 1988 Jul;82(1):37–43. doi: 10.1172/JCI113597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sparks J. D., Sparks C. E. Insulin modulation of hepatic synthesis and secretion of apolipoprotein B by rat hepatocytes. J Biol Chem. 1990 May 25;265(15):8854–8862. [PubMed] [Google Scholar]
- Sparks J. D., Sparks C. E. Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):9–32. doi: 10.1016/0005-2760(94)90088-4. [DOI] [PubMed] [Google Scholar]
- Spring D. J., Chen-Liu L. W., Chatterton J. E., Elovson J., Schumaker V. N. Lipoprotein assembly. Apolipoprotein B size determines lipoprotein core circumference. J Biol Chem. 1992 Jul 25;267(21):14839–14845. [PubMed] [Google Scholar]
- Stals H. K., Top W., Declercq P. E. Regulation of triacylglycerol synthesis in permeabilized rat hepatocytes. Role of fatty acid concentration and diacylglycerol acyltransferase. FEBS Lett. 1994 Apr 18;343(1):99–102. doi: 10.1016/0014-5793(94)80615-2. [DOI] [PubMed] [Google Scholar]
- Stansbie D., Brownsey R. W., Crettaz M., Denton R. M. Acute effects in vivo of anti-insulin serum on rates of fatty acid synthesis and activities of acetyl-coenzyme A carboxylase and pyruvate dehydrogenase in liver and epididymal adipose tissue of fed rats. Biochem J. 1976 Nov 15;160(2):413–416. doi: 10.1042/bj1600413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens T. W., Cook G. A., Harris R. A. Effect of pH on malonyl-CoA inhibition of carnitine palmitoyltransferase I. Biochem J. 1983 May 15;212(2):521–524. doi: 10.1042/bj2120521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swift L. L. Assembly of very low density lipoproteins in rat liver: a study of nascent particles recovered from the rough endoplasmic reticulum. J Lipid Res. 1995 Mar;36(3):395–406. [PubMed] [Google Scholar]
- Thorngate F. E., Raghow R., Wilcox H. G., Werner C. S., Heimberg M., Elam M. B. Insulin promotes the biosynthesis and secretion of apolipoprotein B-48 by altering apolipoprotein B mRNA editing. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5392–5396. doi: 10.1073/pnas.91.12.5392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thrift R. N., Forte T. M., Cahoon B. E., Shore V. G. Characterization of lipoproteins produced by the human liver cell line, Hep G2, under defined conditions. J Lipid Res. 1986 Mar;27(3):236–250. [PubMed] [Google Scholar]
- Thumelin S., Esser V., Charvy D., Kolodziej M., Zammit V. A., McGarry D., Girard J., Pegorier J. P. Expression of liver carnitine palmitoyltransferase I and II genes during development in the rat. Biochem J. 1994 Jun 1;300(Pt 2):583–587. doi: 10.1042/bj3000583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomkin G. H., Owens D. Insulin and lipoprotein metabolism with special reference to the diabetic state. Diabetes Metab Rev. 1994 Oct;10(3):225–252. doi: 10.1002/dmr.5610100303. [DOI] [PubMed] [Google Scholar]
- Topping D. L., Mayes P. A. Insulin and non-esterified fatty acids. Acute regulators of lipogenesis in perfused rat liver. Biochem J. 1982 May 15;204(2):433–439. doi: 10.1042/bj2040433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Topping D. L., Storer G. B., Trimble R. P. Effects of flow rate and insulin on triacylglycerol secretion by perfused rat liver. Am J Physiol. 1988 Sep;255(3 Pt 1):E306–E313. doi: 10.1152/ajpendo.1988.255.3.E306. [DOI] [PubMed] [Google Scholar]
- Tronchère H., Record M., Tercé F., Chap H. Phosphatidylcholine cycle and regulation of phosphatidylcholine biosynthesis by enzyme translocation. Biochim Biophys Acta. 1994 May 13;1212(2):137–151. doi: 10.1016/0005-2760(94)90248-8. [DOI] [PubMed] [Google Scholar]
- Utal A. K., Jamil H., Vance D. E. Diacylglycerol signals the translocation of CTP:choline-phosphate cytidylyltransferase in HeLa cells treated with 12-O-tetradecanoylphorbol-13-acetate. J Biol Chem. 1991 Dec 15;266(35):24084–24091. [PubMed] [Google Scholar]
- Vila M. C., Milligan G., Standaert M. L., Farese R. V. Insulin activates glycerol-3-phosphate acyltransferase (de novo phosphatidic acid synthesis) through a phospholipid-derived mediator. Apparent involvement of Gi alpha and activation of a phospholipase C. Biochemistry. 1990 Sep 18;29(37):8735–8740. doi: 10.1021/bi00489a033. [DOI] [PubMed] [Google Scholar]
- Vogelberg K. H., Gries F. A., Moschinski D. Hepatic production of VLDL-triglycerides. Dependence of portal substrate and insulin concentration. Horm Metab Res. 1980 Dec;12(12):688–694. doi: 10.1055/s-2007-999233. [DOI] [PubMed] [Google Scholar]
- Wang Y., MacDonald J. I., Kent C. Identification of the nuclear localization signal of rat liver CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1995 Jan 6;270(1):354–360. doi: 10.1074/jbc.270.1.354. [DOI] [PubMed] [Google Scholar]
- Wang Y., Sweitzer T. D., Weinhold P. A., Kent C. Nuclear localization of soluble CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1993 Mar 15;268(8):5899–5904. [PubMed] [Google Scholar]
- Watkins J. D., Wang Y. L., Kent C. Regulation of CTP:phosphocholine cytidylyltransferase activity and phosphorylation in rat hepatocytes: lack of effect of elevated cAMP levels. Arch Biochem Biophys. 1992 Feb 1;292(2):360–367. doi: 10.1016/0003-9861(92)90003-f. [DOI] [PubMed] [Google Scholar]
- Weinhold P. A., Charles L., Rounsifer M. E., Feldman D. A. Control of phosphatidylcholine synthesis in Hep G2 cells. Effect of fatty acids on the activity and immunoreactive content of choline phosphate cytidylyltransferase. J Biol Chem. 1991 Apr 5;266(10):6093–6100. [PubMed] [Google Scholar]
- Wiggins D., Gibbons G. F. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas. Biochem J. 1992 Jun 1;284(Pt 2):457–462. doi: 10.1042/bj2840457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witters L. A., Watts T. D., Daniels D. L., Evans J. L. Insulin stimulates the dephosphorylation and activation of acetyl-CoA carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5473–5477. doi: 10.1073/pnas.85.15.5473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woeltje K. F., Esser V., Weis B. C., Sen A., Cox W. F., McPhaul M. J., Slaughter C. A., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver mitochondrial carnitine palmitoyltransferase II. J Biol Chem. 1990 Jun 25;265(18):10720–10725. [PubMed] [Google Scholar]
- Woeltje K. F., Kuwajima M., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. II. Use of detergents and antibodies. J Biol Chem. 1987 Jul 15;262(20):9822–9827. [PubMed] [Google Scholar]
- Wolfe R. R., Durkot M. J. Role of very low density lipoproteins in the energy metabolism of the rat. J Lipid Res. 1985 Feb;26(2):210–217. [PubMed] [Google Scholar]
- Woodside W. F., Heimberg M. Effects of anti-insulin serum, insulin, and glucose on output of triglycerides and on ketogenesis by the perfused rat liver. J Biol Chem. 1976 Jan 10;251(1):13–23. [PubMed] [Google Scholar]
- Woodside W. F., Heimberg M. The metabolism of oleic acid by the perfused rat liver in experimental diabetes induced by antiinsulin serum. Metabolism. 1978 Dec;27(12):1763–1777. doi: 10.1016/0026-0495(78)90262-7. [DOI] [PubMed] [Google Scholar]
- Yamamoto M., Yamamoto I., Tanaka Y., Ontko J. A. Fatty acid metabolism and lipid secretion by perfused livers from rats fed laboratory stock and sucrose-rich diets. J Lipid Res. 1987 Oct;28(10):1156–1165. [PubMed] [Google Scholar]
- Yang L. Y., Kuksis A., Myher J. J., Steiner G. Origin of triacylglycerol moiety of plasma very low density lipoproteins in the rat: structural studies. J Lipid Res. 1995 Jan;36(1):125–136. [PubMed] [Google Scholar]
- Yao Z. M., Vance D. E. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J Biol Chem. 1988 Feb 25;263(6):2998–3004. [PubMed] [Google Scholar]
- Yao Z., McLeod R. S. Synthesis and secretion of hepatic apolipoprotein B-containing lipoproteins. Biochim Biophys Acta. 1994 May 13;1212(2):152–166. doi: 10.1016/0005-2760(94)90249-6. [DOI] [PubMed] [Google Scholar]
- Zammit V. A., Corstorphine C. G. Altered release of carnitine palmitoyltransferase activity by digitonin from liver mitochondria of rats in different physiological states. Biochem J. 1985 Sep 1;230(2):389–394. doi: 10.1042/bj2300389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zammit V. A., Corstorphine C. G., Gray S. R. Changes in the ability of malonyl-CoA to inhibit carnitine palmitoyltransferase I activity and to bind to rat liver mitochondria during incubation in vitro. Differences in binding at 0 degree C and 37 degrees C with a fixed concentration of malonyl-CoA. Biochem J. 1984 Sep 1;222(2):335–342. doi: 10.1042/bj2220335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zammit V. A., Easom R. A. Regulation of hepatic HMG-CoA reductase in vivo by reversible phosphorylation. Biochim Biophys Acta. 1987 Feb 18;927(2):223–228. doi: 10.1016/0167-4889(87)90138-8. [DOI] [PubMed] [Google Scholar]
- Zammit V. A. Effects of hydration state on the synthesis and secretion of triacylglycerol by isolated rat hepatocytes. Implications for the actions of insulin and glucagon on hepatic secretion. Biochem J. 1995 Nov 15;312(Pt 1):57–62. doi: 10.1042/bj3120057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zammit V. A. Mechanisms of regulation of the partition of fatty acids between oxidation and esterification in the liver. Prog Lipid Res. 1984;23(1):39–67. doi: 10.1016/0163-7827(84)90005-5. [DOI] [PubMed] [Google Scholar]
- Zammit V. A., Moir A. M. Monitoring the partitioning of hepatic fatty acids in vivo: keeping track of control. Trends Biochem Sci. 1994 Aug;19(8):313–317. doi: 10.1016/0968-0004(94)90068-x. [DOI] [PubMed] [Google Scholar]
- Zammit V. A. Regulation of hepatic fatty acid metabolism. The activities of mitochondrial and microsomal acyl-CoA:sn-glycerol 3-phosphate O-acyltransferase and the concentrations of malonyl-CoA, non-esterified and esterified carnitine, glycerol 3-phosphate, ketone bodies and long-chain acyl-CoA esters in livers of fed or starved pregnant, lactating and weaned rats. Biochem J. 1981 Jul 15;198(1):75–83. doi: 10.1042/bj1980075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zammit V. A. Time-dependence of inhibition of carnitine palmitoyltransferase I by malonyl-CoA in mitochondria isolated from livers of fed or starved rats. Evidence for transition of the enzyme between states of low and high affinity for malonyl-CoA. Biochem J. 1984 Mar 1;218(2):379–386. doi: 10.1042/bj2180379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zilversmit D. B. Atherogenesis: a postprandial phenomenon. Circulation. 1979 Sep;60(3):473–485. doi: 10.1161/01.cir.60.3.473. [DOI] [PubMed] [Google Scholar]
- Zilversmit D. B. Atherogenic nature of triglycerides, postprandial lipidemia, and triglyceride-rich remnant lipoproteins. Clin Chem. 1995 Jan;41(1):153–158. [PubMed] [Google Scholar]
- vom Dahl S., Hallbrucker C., Lang F., Häussinger D. Regulation of cell volume in the perfused rat liver by hormones. Biochem J. 1991 Nov 15;280(Pt 1):105–109. doi: 10.1042/bj2800105. [DOI] [PMC free article] [PubMed] [Google Scholar]