Abstract
A covalent complex between cytochrome c oxidase and Saccharomyces cerevisiae iso-1-cytochrome c (called caa3) has been prepared at low ionic strength. Subunit III Cys-115 of beef heart cytochrome c oxidase cross-links by disulphide bond formation to thionitrobenzoate-modified yeast cytochrome c, a derivative shown to bind into the high-affinity site for substrate [Fuller, Darley-Usmar and Capaldi (1981) Biochemistry 20, 7046-7053]. Stopped-flow experiments show that (1) covalently bound yeast cytochrome c cannot donate electrons to cytochrome oxidase, whereas oxidation of exogenously added cytochrome c and electron transfer to cytochrome a are only slightly affected; (2) the steady-state reduction levels of cytochrome c and cytochrome a in the covalent complex caa3 are higher than those found in the native aa3 enzyme. However, (3) K(m) and Vmax values obtained from the non-linear Eadie-Hofstee plots are very similar in both caa3 and aa3. The results imply that cytochrome c bound to the high-affinity site is not in a configuration optimal for electron transfer.
Full Text
The Full Text of this article is available as a PDF (770.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alleyne T. A., Wilson M. T., Antonini G., Malatesta F., Vallone B., Sarti P., Brunori M. Investigation of the electron-transfer properties of cytochrome c oxidase covalently cross-linked to Fe- or Zn-containing cytochrome c. Biochem J. 1992 Nov 1;287(Pt 3):951–956. doi: 10.1042/bj2870951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antalis T. M., Palmer G. Kinetic characterization of the interaction between cytochrome oxidase and cytochrome c. J Biol Chem. 1982 Jun 10;257(11):6194–6206. [PubMed] [Google Scholar]
- Babcock G. T., Wikström M. Oxygen activation and the conservation of energy in cell respiration. Nature. 1992 Mar 26;356(6367):301–309. doi: 10.1038/356301a0. [DOI] [PubMed] [Google Scholar]
- Birchmeier W., Kohler C. E., Schatz G. Interaction of integral and peripheral membrane proteins: affinity labeling of yeast cytochrome oxidase by modified yeast cytochrome c. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4334–4338. doi: 10.1073/pnas.73.12.4334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bisson R., Jacobs B., Capaldi R. A. Binding of arylazidocytochrome c derivatives to beef heart cytochrome c oxidase: cross-linking in the high- and low-affinity binding sites. Biochemistry. 1980 Sep 2;19(18):4173–4178. doi: 10.1021/bi00559a006. [DOI] [PubMed] [Google Scholar]
- Brunori M., Antonini G., Malatesta F., Sarti P., Wilson M. T. Structure and function of cytochrome oxidase: a second look. Adv Inorg Biochem. 1988;7:93–153. [PubMed] [Google Scholar]
- Brunori M., Colosimo A., Rainoni G., Wilson M. T., Antonini E. Functional intermediates of cytochrome oxidase. Role of "pulsed" oxidase in the pre-steady state and steady state reactions of the beef enzyme. J Biol Chem. 1979 Nov 10;254(21):10769–10775. [PubMed] [Google Scholar]
- Brzezinski P., Malmström B. G. Electron-transport-driven proton pumps display nonhyperbolic kinetics: Simulation of the steady-state kinetics of cytochrome c oxidase. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4282–4286. doi: 10.1073/pnas.83.12.4282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buse G., Meinecke L., Bruch B. The protein formula of beef heart cytochrome c oxidase. J Inorg Biochem. 1985 Mar-Apr;23(3-4):149–153. doi: 10.1016/0162-0134(85)85019-4. [DOI] [PubMed] [Google Scholar]
- Capaldi R. A., Malatesta F., Darley-Usmar V. M. Structure of cytochrome c oxidase. Biochim Biophys Acta. 1983 Jul 15;726(2):135–148. doi: 10.1016/0304-4173(83)90003-4. [DOI] [PubMed] [Google Scholar]
- Downer N. W., Robinson N. C. Characterization of a seventh different subunit of beef heart cytochrome c oxidase. Similarities between the beef heart enzyme and that from other species. Biochemistry. 1976 Jun 29;15(13):2930–2936. doi: 10.1021/bi00658a036. [DOI] [PubMed] [Google Scholar]
- Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
- Fuller S. D., Darley-Usmar V. M., Capaldi R. A. Covalent complex between yeast cytochrome c and beef heart cytochrome c oxidase which is active in electron transfer. Biochemistry. 1981 Nov 24;20(24):7046–7053. doi: 10.1021/bi00527a043. [DOI] [PubMed] [Google Scholar]
- GIBSON Q. H., GREENWOOD C. THE REACTION OF CYTOCHROME OXIDASE WITH CYTOCHROME C. J Biol Chem. 1965 Feb;240:888–894. [PubMed] [Google Scholar]
- Hazzard J. T., Rong S. Y., Tollin G. Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase. Biochemistry. 1991 Jan 8;30(1):213–222. doi: 10.1021/bi00215a031. [DOI] [PubMed] [Google Scholar]
- Hill B. C. The reaction of the electrostatic cytochrome c-cytochrome oxidase complex with oxygen. J Biol Chem. 1991 Feb 5;266(4):2219–2226. [PubMed] [Google Scholar]
- Hosler J. P., Ferguson-Miller S., Calhoun M. W., Thomas J. W., Hill J., Lemieux L., Ma J., Georgiou C., Fetter J., Shapleigh J. Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa3 and cytochrome bo. J Bioenerg Biomembr. 1993 Apr;25(2):121–136. doi: 10.1007/BF00762854. [DOI] [PubMed] [Google Scholar]
- Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malatesta F., Antonini G., Sarti P., Brunori M. Structure and function of a molecular machine: cytochrome c oxidase. Biophys Chem. 1995 Mar;54(1):1–33. doi: 10.1016/0301-4622(94)00117-3. [DOI] [PubMed] [Google Scholar]
- Malatesta F., Antonini G., Sarti P., Brunori M. Transient kinetics of subunit-III-depleted cytochrome c oxidase. Biochem J. 1986 Mar 15;234(3):569–572. doi: 10.1042/bj2340569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malatesta F., Capaldi R. Localization of cysteine115 in subunit III of beef heart cytochrome C oxidase to the C side of the mitochondrial inner membrane. Biochem Biophys Res Commun. 1982 Dec 31;109(4):1180–1185. doi: 10.1016/0006-291x(82)91901-5. [DOI] [PubMed] [Google Scholar]
- Malatesta F., Sarti P., Antonini G., Vallone B., Brunori M. Electron transfer to the binuclear center in cytochrome oxidase: catalytic significance and evidence for an additional intermediate. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7410–7413. doi: 10.1073/pnas.87.19.7410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michel B., Bosshard H. R. Oxidation of cytochrome c by cytochrome c oxidase: spectroscopic binding studies and steady-state kinetics support a conformational transition mechanism. Biochemistry. 1989 Jan 10;28(1):244–252. doi: 10.1021/bi00427a034. [DOI] [PubMed] [Google Scholar]
- Michel B., Bosshard H. R. Spectroscopic analysis of the interaction between cytochrome c and cytochrome c oxidase. J Biol Chem. 1984 Aug 25;259(16):10085–10091. [PubMed] [Google Scholar]
- Michel B., Proudfoot A. E., Wallace C. J., Bosshard H. R. The cytochrome c oxidase-cytochrome c complex: spectroscopic analysis of conformational changes in the protein-protein interaction domain. Biochemistry. 1989 Jan 24;28(2):456–462. doi: 10.1021/bi00428a008. [DOI] [PubMed] [Google Scholar]
- Millett F., Darley-Usmar V., Capaldi R. A. Cytochrome c is cross-linked to subunit II of cytochrome c oxidase by a water-soluble carbodiimide. Biochemistry. 1982 Aug 3;21(16):3857–3862. doi: 10.1021/bi00259a021. [DOI] [PubMed] [Google Scholar]
- Millett F., de Jong C., Paulson L., Capaldi R. A. Identification of specific carboxylate groups on cytochrome c oxidase that are involved in binding cytochrome c. Biochemistry. 1983 Feb 1;22(3):546–552. doi: 10.1021/bi00272a004. [DOI] [PubMed] [Google Scholar]
- Misra H. P., Fridovich I. A convenient calibration of the Clark oxygen electrode. Anal Biochem. 1976 Feb;70(2):632–634. doi: 10.1016/0003-2697(76)90492-9. [DOI] [PubMed] [Google Scholar]
- Osheroff N., Speck S. H., Margoliash E., Veerman E. C., Wilms J., König B. W., Muijsers A. O. The reaction of primate cytochromes c with cytochrome c oxidase. Analysis of the polarographic assay. J Biol Chem. 1983 May 10;258(9):5731–5738. [PubMed] [Google Scholar]
- Pan L. P., Hibdon S., Liu R. Q., Durham B., Millett F. Intracomplex electron transfer between ruthenium-cytochrome c derivatives and cytochrome c oxidase. Biochemistry. 1993 Aug 24;32(33):8492–8498. doi: 10.1021/bi00084a014. [DOI] [PubMed] [Google Scholar]
- Saraste M. Structural features of cytochrome oxidase. Q Rev Biophys. 1990 Nov;23(4):331–366. doi: 10.1017/s0033583500005588. [DOI] [PubMed] [Google Scholar]
- Sinjorgo K. M., Meijling J. H., Muijsers A. O. The concept of high- and low-affinity reactions in bovine cytochrome c oxidase steady-state kinetics. Biochim Biophys Acta. 1984 Oct 26;767(1):48–56. doi: 10.1016/0005-2728(84)90078-1. [DOI] [PubMed] [Google Scholar]
- Sinjorgo K. M., Steinebach O. M., Dekker H. L., Muijsers A. O. The effects of pH and ionic strength on cytochrome c oxidase steady-state kinetics reveal a catalytic and a non-catalytic interaction domain for cytochrome c. Biochim Biophys Acta. 1986 Jun 10;850(1):108–115. doi: 10.1016/0005-2728(86)90014-9. [DOI] [PubMed] [Google Scholar]
- Speck S. H., Dye D., Margoliash E. Single catalytic site model for the oxidation of ferrocytochrome c by mitochondrial cytochrome c oxidase. Proc Natl Acad Sci U S A. 1984 Jan;81(2):347–351. doi: 10.1073/pnas.81.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. E., Ryan D., Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976 Sep;75(1):168–176. doi: 10.1016/0003-2697(76)90067-1. [DOI] [PubMed] [Google Scholar]
- Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995 Aug 25;269(5227):1069–1074. doi: 10.1126/science.7652554. [DOI] [PubMed] [Google Scholar]
- Vanneste W. H. The stoichiometry and absorption spectra of components a and a-3 in cytochrome c oxidase. Biochemistry. 1966 Mar;5(3):838–848. doi: 10.1021/bi00867a005. [DOI] [PubMed] [Google Scholar]
- Wilson M. T., Peterson J., Antonini E., Brunori M., Colosimo A., Wyman J. A plausible two-state model for cytochrome c oxidase. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7115–7118. doi: 10.1073/pnas.78.11.7115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]
- van Gelder B. F. On cytochrome c oxidase. I. The extinction coefficients of cytochrome a and cytochrome a3. Biochim Biophys Acta. 1966 Apr 12;118(1):36–46. doi: 10.1016/s0926-6593(66)80142-x. [DOI] [PubMed] [Google Scholar]
- van der Oost J., Lappalainen P., Musacchio A., Warne A., Lemieux L., Rumbley J., Gennis R. B., Aasa R., Pascher T., Malmström B. G. Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex. EMBO J. 1992 Sep;11(9):3209–3217. doi: 10.1002/j.1460-2075.1992.tb05398.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
