Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 1;315(Pt 3):909–916. doi: 10.1042/bj3150909

Probing the high-affinity site of beef heart cytochrome c oxidase by cross-linking.

F Malatesta 1, G Antonini 1, F Nicoletti 1, A Giuffrè 1, E D'Itri 1, P Sarti 1, M Brunori 1
PMCID: PMC1217293  PMID: 8645176

Abstract

A covalent complex between cytochrome c oxidase and Saccharomyces cerevisiae iso-1-cytochrome c (called caa3) has been prepared at low ionic strength. Subunit III Cys-115 of beef heart cytochrome c oxidase cross-links by disulphide bond formation to thionitrobenzoate-modified yeast cytochrome c, a derivative shown to bind into the high-affinity site for substrate [Fuller, Darley-Usmar and Capaldi (1981) Biochemistry 20, 7046-7053]. Stopped-flow experiments show that (1) covalently bound yeast cytochrome c cannot donate electrons to cytochrome oxidase, whereas oxidation of exogenously added cytochrome c and electron transfer to cytochrome a are only slightly affected; (2) the steady-state reduction levels of cytochrome c and cytochrome a in the covalent complex caa3 are higher than those found in the native aa3 enzyme. However, (3) K(m) and Vmax values obtained from the non-linear Eadie-Hofstee plots are very similar in both caa3 and aa3. The results imply that cytochrome c bound to the high-affinity site is not in a configuration optimal for electron transfer.

Full Text

The Full Text of this article is available as a PDF (770.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alleyne T. A., Wilson M. T., Antonini G., Malatesta F., Vallone B., Sarti P., Brunori M. Investigation of the electron-transfer properties of cytochrome c oxidase covalently cross-linked to Fe- or Zn-containing cytochrome c. Biochem J. 1992 Nov 1;287(Pt 3):951–956. doi: 10.1042/bj2870951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antalis T. M., Palmer G. Kinetic characterization of the interaction between cytochrome oxidase and cytochrome c. J Biol Chem. 1982 Jun 10;257(11):6194–6206. [PubMed] [Google Scholar]
  3. Babcock G. T., Wikström M. Oxygen activation and the conservation of energy in cell respiration. Nature. 1992 Mar 26;356(6367):301–309. doi: 10.1038/356301a0. [DOI] [PubMed] [Google Scholar]
  4. Birchmeier W., Kohler C. E., Schatz G. Interaction of integral and peripheral membrane proteins: affinity labeling of yeast cytochrome oxidase by modified yeast cytochrome c. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4334–4338. doi: 10.1073/pnas.73.12.4334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bisson R., Jacobs B., Capaldi R. A. Binding of arylazidocytochrome c derivatives to beef heart cytochrome c oxidase: cross-linking in the high- and low-affinity binding sites. Biochemistry. 1980 Sep 2;19(18):4173–4178. doi: 10.1021/bi00559a006. [DOI] [PubMed] [Google Scholar]
  6. Brunori M., Antonini G., Malatesta F., Sarti P., Wilson M. T. Structure and function of cytochrome oxidase: a second look. Adv Inorg Biochem. 1988;7:93–153. [PubMed] [Google Scholar]
  7. Brunori M., Colosimo A., Rainoni G., Wilson M. T., Antonini E. Functional intermediates of cytochrome oxidase. Role of "pulsed" oxidase in the pre-steady state and steady state reactions of the beef enzyme. J Biol Chem. 1979 Nov 10;254(21):10769–10775. [PubMed] [Google Scholar]
  8. Brzezinski P., Malmström B. G. Electron-transport-driven proton pumps display nonhyperbolic kinetics: Simulation of the steady-state kinetics of cytochrome c oxidase. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4282–4286. doi: 10.1073/pnas.83.12.4282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buse G., Meinecke L., Bruch B. The protein formula of beef heart cytochrome c oxidase. J Inorg Biochem. 1985 Mar-Apr;23(3-4):149–153. doi: 10.1016/0162-0134(85)85019-4. [DOI] [PubMed] [Google Scholar]
  10. Capaldi R. A., Malatesta F., Darley-Usmar V. M. Structure of cytochrome c oxidase. Biochim Biophys Acta. 1983 Jul 15;726(2):135–148. doi: 10.1016/0304-4173(83)90003-4. [DOI] [PubMed] [Google Scholar]
  11. Downer N. W., Robinson N. C. Characterization of a seventh different subunit of beef heart cytochrome c oxidase. Similarities between the beef heart enzyme and that from other species. Biochemistry. 1976 Jun 29;15(13):2930–2936. doi: 10.1021/bi00658a036. [DOI] [PubMed] [Google Scholar]
  12. Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
  13. Fuller S. D., Darley-Usmar V. M., Capaldi R. A. Covalent complex between yeast cytochrome c and beef heart cytochrome c oxidase which is active in electron transfer. Biochemistry. 1981 Nov 24;20(24):7046–7053. doi: 10.1021/bi00527a043. [DOI] [PubMed] [Google Scholar]
  14. GIBSON Q. H., GREENWOOD C. THE REACTION OF CYTOCHROME OXIDASE WITH CYTOCHROME C. J Biol Chem. 1965 Feb;240:888–894. [PubMed] [Google Scholar]
  15. Hazzard J. T., Rong S. Y., Tollin G. Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase. Biochemistry. 1991 Jan 8;30(1):213–222. doi: 10.1021/bi00215a031. [DOI] [PubMed] [Google Scholar]
  16. Hill B. C. The reaction of the electrostatic cytochrome c-cytochrome oxidase complex with oxygen. J Biol Chem. 1991 Feb 5;266(4):2219–2226. [PubMed] [Google Scholar]
  17. Hosler J. P., Ferguson-Miller S., Calhoun M. W., Thomas J. W., Hill J., Lemieux L., Ma J., Georgiou C., Fetter J., Shapleigh J. Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa3 and cytochrome bo. J Bioenerg Biomembr. 1993 Apr;25(2):121–136. doi: 10.1007/BF00762854. [DOI] [PubMed] [Google Scholar]
  18. Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Malatesta F., Antonini G., Sarti P., Brunori M. Structure and function of a molecular machine: cytochrome c oxidase. Biophys Chem. 1995 Mar;54(1):1–33. doi: 10.1016/0301-4622(94)00117-3. [DOI] [PubMed] [Google Scholar]
  22. Malatesta F., Antonini G., Sarti P., Brunori M. Transient kinetics of subunit-III-depleted cytochrome c oxidase. Biochem J. 1986 Mar 15;234(3):569–572. doi: 10.1042/bj2340569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Malatesta F., Capaldi R. Localization of cysteine115 in subunit III of beef heart cytochrome C oxidase to the C side of the mitochondrial inner membrane. Biochem Biophys Res Commun. 1982 Dec 31;109(4):1180–1185. doi: 10.1016/0006-291x(82)91901-5. [DOI] [PubMed] [Google Scholar]
  24. Malatesta F., Sarti P., Antonini G., Vallone B., Brunori M. Electron transfer to the binuclear center in cytochrome oxidase: catalytic significance and evidence for an additional intermediate. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7410–7413. doi: 10.1073/pnas.87.19.7410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Michel B., Bosshard H. R. Oxidation of cytochrome c by cytochrome c oxidase: spectroscopic binding studies and steady-state kinetics support a conformational transition mechanism. Biochemistry. 1989 Jan 10;28(1):244–252. doi: 10.1021/bi00427a034. [DOI] [PubMed] [Google Scholar]
  26. Michel B., Bosshard H. R. Spectroscopic analysis of the interaction between cytochrome c and cytochrome c oxidase. J Biol Chem. 1984 Aug 25;259(16):10085–10091. [PubMed] [Google Scholar]
  27. Michel B., Proudfoot A. E., Wallace C. J., Bosshard H. R. The cytochrome c oxidase-cytochrome c complex: spectroscopic analysis of conformational changes in the protein-protein interaction domain. Biochemistry. 1989 Jan 24;28(2):456–462. doi: 10.1021/bi00428a008. [DOI] [PubMed] [Google Scholar]
  28. Millett F., Darley-Usmar V., Capaldi R. A. Cytochrome c is cross-linked to subunit II of cytochrome c oxidase by a water-soluble carbodiimide. Biochemistry. 1982 Aug 3;21(16):3857–3862. doi: 10.1021/bi00259a021. [DOI] [PubMed] [Google Scholar]
  29. Millett F., de Jong C., Paulson L., Capaldi R. A. Identification of specific carboxylate groups on cytochrome c oxidase that are involved in binding cytochrome c. Biochemistry. 1983 Feb 1;22(3):546–552. doi: 10.1021/bi00272a004. [DOI] [PubMed] [Google Scholar]
  30. Misra H. P., Fridovich I. A convenient calibration of the Clark oxygen electrode. Anal Biochem. 1976 Feb;70(2):632–634. doi: 10.1016/0003-2697(76)90492-9. [DOI] [PubMed] [Google Scholar]
  31. Osheroff N., Speck S. H., Margoliash E., Veerman E. C., Wilms J., König B. W., Muijsers A. O. The reaction of primate cytochromes c with cytochrome c oxidase. Analysis of the polarographic assay. J Biol Chem. 1983 May 10;258(9):5731–5738. [PubMed] [Google Scholar]
  32. Pan L. P., Hibdon S., Liu R. Q., Durham B., Millett F. Intracomplex electron transfer between ruthenium-cytochrome c derivatives and cytochrome c oxidase. Biochemistry. 1993 Aug 24;32(33):8492–8498. doi: 10.1021/bi00084a014. [DOI] [PubMed] [Google Scholar]
  33. Saraste M. Structural features of cytochrome oxidase. Q Rev Biophys. 1990 Nov;23(4):331–366. doi: 10.1017/s0033583500005588. [DOI] [PubMed] [Google Scholar]
  34. Sinjorgo K. M., Meijling J. H., Muijsers A. O. The concept of high- and low-affinity reactions in bovine cytochrome c oxidase steady-state kinetics. Biochim Biophys Acta. 1984 Oct 26;767(1):48–56. doi: 10.1016/0005-2728(84)90078-1. [DOI] [PubMed] [Google Scholar]
  35. Sinjorgo K. M., Steinebach O. M., Dekker H. L., Muijsers A. O. The effects of pH and ionic strength on cytochrome c oxidase steady-state kinetics reveal a catalytic and a non-catalytic interaction domain for cytochrome c. Biochim Biophys Acta. 1986 Jun 10;850(1):108–115. doi: 10.1016/0005-2728(86)90014-9. [DOI] [PubMed] [Google Scholar]
  36. Speck S. H., Dye D., Margoliash E. Single catalytic site model for the oxidation of ferrocytochrome c by mitochondrial cytochrome c oxidase. Proc Natl Acad Sci U S A. 1984 Jan;81(2):347–351. doi: 10.1073/pnas.81.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thomas P. E., Ryan D., Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976 Sep;75(1):168–176. doi: 10.1016/0003-2697(76)90067-1. [DOI] [PubMed] [Google Scholar]
  38. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995 Aug 25;269(5227):1069–1074. doi: 10.1126/science.7652554. [DOI] [PubMed] [Google Scholar]
  39. Vanneste W. H. The stoichiometry and absorption spectra of components a and a-3 in cytochrome c oxidase. Biochemistry. 1966 Mar;5(3):838–848. doi: 10.1021/bi00867a005. [DOI] [PubMed] [Google Scholar]
  40. Wilson M. T., Peterson J., Antonini E., Brunori M., Colosimo A., Wyman J. A plausible two-state model for cytochrome c oxidase. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7115–7118. doi: 10.1073/pnas.78.11.7115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]
  42. van Gelder B. F. On cytochrome c oxidase. I. The extinction coefficients of cytochrome a and cytochrome a3. Biochim Biophys Acta. 1966 Apr 12;118(1):36–46. doi: 10.1016/s0926-6593(66)80142-x. [DOI] [PubMed] [Google Scholar]
  43. van der Oost J., Lappalainen P., Musacchio A., Warne A., Lemieux L., Rumbley J., Gennis R. B., Aasa R., Pascher T., Malmström B. G. Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex. EMBO J. 1992 Sep;11(9):3209–3217. doi: 10.1002/j.1460-2075.1992.tb05398.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES