Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 15;317(Pt 2):605–611. doi: 10.1042/bj3170605

Structural changes in subdomain 2 of G-actin observed by fluorescence spectroscopy.

J Moraczewska 1, H Strzelecka-Gołaszewska 1, P D Moens 1, C G dos Remedios 1
PMCID: PMC1217529  PMID: 8713092

Abstract

The influence of DNase I binding to Ca-ATP-G-actin and of Ca2+/Mg2+ and ATP/ADP exchange on the conformation of G-actin were investigated by measuring the fluorescence of dansyl cadaverine (DC) conjugated to Gln41 in subdomain 2 of the protein. Fluorescence resonance energy transfer (FRET) between this probe and N-[4-(dimethylamino)-3,5-dinitrophenyl]maleimide (DDPM) attached to Cys374 in subdomain 1 was also measured. Contrary to an earlier report [dos Remedios, Kiessling and Hambly (1994) in Synchrotron Radiation in the Biosciences (Chance, B., Deisenhofer, J., Ebashi, S., Goodhead, D. T., Helliwell, J. R., Huxley, H. E., Iizuka, T., Kirz, J., Mitsui, T., Rubenstein, E. et al., eds.), pp. 418-425, Oxford University Press, Oxford], the distance between these probes did not change significantly when DNase I was bound to actin. A small but reproducible increase in the quantum yield and a blue shift of the DC fluorescence maximum were observed when bound Ca2+ was replaced by Mg2+. A large increase (about 70%) in the quantum yield and an approx. 12 nm blue shift of the emission spectrum occurred when ATP in Mg-G-actin was replaced by ADP. These changes were not accompanied by any significant change in the FRET distance between the dansyl donor and DDPM acceptor probes. A substantial change in the fluorescence of DC-actin was observed after proteolytic removal of the last three residues of actin, in accordance with earlier evidence suggesting that there is a conformational coupling between subdomain 2 and the C-terminal segment in subdomain 1 of actin. The results are discussed in relation to recently published data obtained with another fluorescent probe and to earlier observations based on limited cleavage using proteolytic enzymes.

Full Text

The Full Text of this article is available as a PDF (473.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. B., Reisler E. Sequence 18-29 on actin: antibody and spectroscopic probing of conformational changes. Biochemistry. 1994 Dec 6;33(48):14426–14433. doi: 10.1021/bi00252a008. [DOI] [PubMed] [Google Scholar]
  2. Attri A. K., Lewis M. S., Korn E. D. The formation of actin oligomers studied by analytical ultracentrifugation. J Biol Chem. 1991 Apr 15;266(11):6815–6824. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Brenner S. L., Korn E. D. Stimulation of actin ATPase activity by cytochalasins provides evidence for a new species of monomeric actin. J Biol Chem. 1981 Aug 25;256(16):8663–8670. [PubMed] [Google Scholar]
  5. Carlier M. F. Actin polymerization and ATP hydrolysis. Adv Biophys. 1990;26:51–73. doi: 10.1016/0065-227x(90)90007-g. [DOI] [PubMed] [Google Scholar]
  6. Carlier M. F., Pantaloni D., Korn E. D. Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin. J Biol Chem. 1986 Aug 15;261(23):10778–10784. [PubMed] [Google Scholar]
  7. Carlier M. F., Pantaloni D., Korn E. D. The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis. J Biol Chem. 1986 Aug 15;261(23):10785–10792. [PubMed] [Google Scholar]
  8. Crosbie R. H., Miller C., Cheung P., Goodnight T., Muhlrad A., Reisler E. Structural connectivity in actin: effect of C-terminal modifications on the properties of actin. Biophys J. 1994 Nov;67(5):1957–1964. doi: 10.1016/S0006-3495(94)80678-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drewes G., Faulstich H. A reversible conformational transition in muscle actin is caused by nucleotide exchange and uncovers cysteine in position 10. J Biol Chem. 1991 Mar 25;266(9):5508–5513. [PubMed] [Google Scholar]
  10. Epe B., Steinhäuser K. G., Woolley P. Theory of measurement of Förster-type energy transfer in macromolecules. Proc Natl Acad Sci U S A. 1983 May;80(9):2579–2583. doi: 10.1073/pnas.80.9.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Estes J. E., Selden L. A., Gershman L. C. Tight binding of divalent cations to monomeric actin. Binding kinetics support a simplified model. J Biol Chem. 1987 Apr 15;262(11):4952–4957. [PubMed] [Google Scholar]
  12. Estes J. E., Selden L. A., Kinosian H. J., Gershman L. C. Tightly-bound divalent cation of actin. J Muscle Res Cell Motil. 1992 Jun;13(3):272–284. doi: 10.1007/BF01766455. [DOI] [PubMed] [Google Scholar]
  13. Frieden C., Lieberman D., Gilbert H. R. A fluorescent probe for conformational changes in skeletal muscle G-actin. J Biol Chem. 1980 Oct 10;255(19):8991–8993. [PubMed] [Google Scholar]
  14. Frieden C., Patane K. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP. Biochemistry. 1985 Jul 16;24(15):4192–4196. doi: 10.1021/bi00336a056. [DOI] [PubMed] [Google Scholar]
  15. GOLD A. H., SEGAL H. L. THE AMINO ACID SEQUENCE OF A HEXAPEPTIDE CONTAINING AN ESSENTIAL SULFHYDRYL GROUP OF RABBIT MUSCLE GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE. Biochemistry. 1964 Jun;3:778–782. doi: 10.1021/bi00894a008. [DOI] [PubMed] [Google Scholar]
  16. Gershman L. C., Selden L. A., Kinosian H. J., Estes J. E. Preparation and polymerization properties of monomeric ADP-actin. Biochim Biophys Acta. 1989 Apr 6;995(2):109–115. doi: 10.1016/0167-4838(89)90068-x. [DOI] [PubMed] [Google Scholar]
  17. Houk T. W., Jr, Ue K. The measurement of actin concentration in solution: a comparison of methods. Anal Biochem. 1974 Nov;62(1):66–74. doi: 10.1016/0003-2697(74)90367-4. [DOI] [PubMed] [Google Scholar]
  18. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  19. Khaitlina SYu, Collins J. H., Kuznetsova I. M., Pershina V. P., Synakevich I. G., Turoverov K. K., Usmanova A. M. Physico-chemical properties of actin cleaved with bacterial protease from E. coli A2 strain. FEBS Lett. 1991 Feb 11;279(1):49–51. doi: 10.1016/0014-5793(91)80247-z. [DOI] [PubMed] [Google Scholar]
  20. Khaitlina S. Y., Moraczewska J., Strzelecka-Gołaszewska H. The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. Eur J Biochem. 1993 Dec 15;218(3):911–920. doi: 10.1111/j.1432-1033.1993.tb18447.x. [DOI] [PubMed] [Google Scholar]
  21. Kim E., Motoki M., Seguro K., Muhlrad A., Reisler E. Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41. Biophys J. 1995 Nov;69(5):2024–2032. doi: 10.1016/S0006-3495(95)80072-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kinosian H. J., Selden L. A., Estes J. E., Gershman L. C. Nucleotide binding to actin. Cation dependence of nucleotide dissociation and exchange rates. J Biol Chem. 1993 Apr 25;268(12):8683–8691. [PubMed] [Google Scholar]
  23. LINBERG U. PURIFICATION OF AN INHIBITOR OF PANCREATIC DEOXYRIBONUCLEASE FROM CALF SPLEEN. Biochim Biophys Acta. 1964 Feb 10;82:237–248. [PubMed] [Google Scholar]
  24. Lorand L., Rule N. G., Ong H. H., Furlanetto R., Jacobsen A., Downey J., Oner N., Bruner-Lorand J. Amine specificity in transpeptidation. Inhibition of fibrin cross-linking. Biochemistry. 1968 Mar;7(3):1214–1223. doi: 10.1021/bi00843a043. [DOI] [PubMed] [Google Scholar]
  25. Lorenz M., Poole K. J., Popp D., Rosenbaum G., Holmes K. C. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J Mol Biol. 1995 Feb 10;246(1):108–119. doi: 10.1006/jmbi.1994.0070. [DOI] [PubMed] [Google Scholar]
  26. McLaughlin P. J., Gooch J. T., Mannherz H. G., Weeds A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 1993 Aug 19;364(6439):685–692. doi: 10.1038/364685a0. [DOI] [PubMed] [Google Scholar]
  27. Miki M. Detection of conformational changes in actin by fluorescence resonance energy transfer between tyrosine-69 and cysteine-374. Biochemistry. 1991 Nov 12;30(45):10878–10884. doi: 10.1021/bi00109a011. [DOI] [PubMed] [Google Scholar]
  28. Miki M., O'Donoghue S. I., Dos Remedios C. G. Structure of actin observed by fluorescence resonance energy transfer spectroscopy. J Muscle Res Cell Motil. 1992 Apr;13(2):132–145. doi: 10.1007/BF01874150. [DOI] [PubMed] [Google Scholar]
  29. Mossakowska M., Moraczewska J., Khaitlina S., Strzelecka-Golaszewska H. Proteolytic removal of three C-terminal residues of actin alters the monomer-monomer interactions. Biochem J. 1993 Feb 1;289(Pt 3):897–902. doi: 10.1042/bj2890897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Méjean C., Hué H. K., Pons F., Roustan C., Benyamin Y. Cation binding sites on actin: a structural relationship between antigenic epitopes and cation exchange. Biochem Biophys Res Commun. 1988 Apr 15;152(1):368–375. doi: 10.1016/s0006-291x(88)80723-x. [DOI] [PubMed] [Google Scholar]
  31. Nowak E., Strzelecka-Golaszewska H., Goody R. S. Kinetics of nucleotide and metal ion interaction with G-actin. Biochemistry. 1988 Mar 8;27(5):1785–1792. doi: 10.1021/bi00405a060. [DOI] [PubMed] [Google Scholar]
  32. O'Donoghue S. I., Hambly B. D., dos Remedios C. G. Models of the actin monomer and filament from fluorescence resonance-energy transfer. Eur J Biochem. 1992 Apr 15;205(2):591–601. doi: 10.1111/j.1432-1033.1992.tb16817.x. [DOI] [PubMed] [Google Scholar]
  33. Schutt C. E., Myslik J. C., Rozycki M. D., Goonesekere N. C., Lindberg U. The structure of crystalline profilin-beta-actin. Nature. 1993 Oct 28;365(6449):810–816. doi: 10.1038/365810a0. [DOI] [PubMed] [Google Scholar]
  34. Schwyter D., Phillips M., Reisler E. Subtilisin-cleaved actin: polymerization and interaction with myosin subfragment 1. Biochemistry. 1989 Jul 11;28(14):5889–5895. doi: 10.1021/bi00440a027. [DOI] [PubMed] [Google Scholar]
  35. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  36. Strzelecka-Golaszewska H., Wozniak A., Hult T., Lindberg U. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin. Biochem J. 1996 Jun 15;316(Pt 3):713–721. doi: 10.1042/bj3160713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Strzelecka-Gołaszewska H., Mossakowska M., Woźniak A., Moraczewska J., Nakayama H. Long-range conformational effects of proteolytic removal of the last three residues of actin. Biochem J. 1995 Apr 15;307(Pt 2):527–534. doi: 10.1042/bj3070527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Takashi R. A novel actin label: a fluorescent probe at glutamine-41 and its consequences. Biochemistry. 1988 Feb 9;27(3):938–943. doi: 10.1021/bi00403a015. [DOI] [PubMed] [Google Scholar]
  39. Tirion M. M., ben-Avraham D., Lorenz M., Holmes K. C. Normal modes as refinement parameters for the F-actin model. Biophys J. 1995 Jan;68(1):5–12. doi: 10.1016/S0006-3495(95)80156-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Valentin-Ranc C., Carlier M. F. Evidence for the direct interaction between tightly bound divalent metal ion and ATP on actin. Binding of the lambda isomers of beta gamma-bidentate CrATP to actin. J Biol Chem. 1989 Dec 15;264(35):20871–20880. [PubMed] [Google Scholar]
  41. dos Remedios C. G., Moens P. D. Actin and the actomyosin interface: a review. Biochim Biophys Acta. 1995 Mar 14;1228(2-3):99–124. doi: 10.1016/0005-2728(94)00169-6. [DOI] [PubMed] [Google Scholar]
  42. dos Remedios C. G., Moens P. D. Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J Struct Biol. 1995 Sep-Oct;115(2):175–185. doi: 10.1006/jsbi.1995.1042. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES