Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 15;318(Pt 3):1023–1031. doi: 10.1042/bj3181023

Specificity of G alpha q and G alpha 11 gene expression in platelets and erythrocytes. Expressions of cellular differentiation and species differences.

G J Johnson 1, L A Leis 1, P C Dunlop 1
PMCID: PMC1217719  PMID: 8836152

Abstract

G alpha q and G alpha 11, members of the Gq family of G-proteins, transduce signals from receptors to the beta isoenzymes of phosphatidyl-inositol-specific phospholipase C (PI-PLC). The receptor specificity of these alpha subunits is unknown. G alpha q and G alpha 11 are ubiquitously expressed in tissues; however, there have been conflicting reports of the presence or absence of G alpha 11 protein in haematopoietic cells. Platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors activate PI-PLC via G alpha q, but the role of G alpha 11 is uncertain. To define their roles in platelet activation we studied G alpha q and G alpha 11 gene expression by immunotransfer blotting and by reverse transcription of mRNA followed by PCR (RT-PCR) and direct sequencing. An antiserum specific for mouse G alpha 11 failed to identify G alpha 11 in dog or human platelets or in dog liver, a tissue known to contain G alpha 11. RT-PCR performed with gene-specific primers demonstrated G alpha q mRNA, but not G alpha 11 mRNA, in normal human and mouse platelets and in thromboxane-sensitive and thromboxane-insensitive dog platelets. Studies of mouse and dog liver and human retina confirmed that the cDNA, primers and probes used could amplify and recognize G alpha 11 in other tissues. However, species-specific oligonucleotide primers and probes were essential to demonstrate G alpha 11, but not G alpha q, mRNA. Compared with mouse cDNA, dog and human G alpha 11 cDNA had twice as many nucleotide substitutions (approx. 12% compared with approx. 6%) as G alpha q, G alpha q mRNA was also found in mature erythrocytes but G alpha 11 mRNA was not identified, whereas both G alpha q and G alpha 11 mRNAs were found in bone marrow stem cells. Therefore G alpha 11 gene expression in haematopoietic cells is linked with cellular differentiation. The lack of G alpha 11 indicates that signal transduction from platelet TXA2/PGH2 receptors to PI-PLC occurs via G alpha q, and that G alpha 11 deficiency is not responsible for defective activation of PI-PLC in thromboxane-insensitive dog platelets. Despite the high degree of similarity that exists between G alpha q and G alpha 11, significantly greater species-specific variation in nucleotide sequence is present in G alpha 11 than in G alpha q. Cellular specificity and species specificity are important characteristics of these Gq family G-proteins.

Full Text

The Full Text of this article is available as a PDF (673.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amatruda T. T., 3rd, Steele D. A., Slepak V. Z., Simon M. I. G alpha 16, a G protein alpha subunit specifically expressed in hematopoietic cells. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5587–5591. doi: 10.1073/pnas.88.13.5587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldassare J. J., Tarver A. P., Henderson P. A., Mackin W. M., Sahagan B., Fisher G. J. Reconstitution of thromboxane A2 receptor-stimulated phosphoinositide hydrolysis in isolated platelet membranes: involvement of phosphoinositide-specific phospholipase C-beta and GTP-binding protein Gq. Biochem J. 1993 Apr 1;291(Pt 1):235–240. doi: 10.1042/bj2910235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berstein G., Blank J. L., Smrcka A. V., Higashijima T., Sternweis P. C., Exton J. H., Ross E. M. Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase C-beta 1. J Biol Chem. 1992 Apr 25;267(12):8081–8088. [PubMed] [Google Scholar]
  4. Bhatia R., McGlave P. B., Verfaillie C. M. Treatment of marrow stroma with interferon-alpha restores normal beta 1 integrin-dependent adhesion of chronic myelogenous leukemia hematopoietic progenitors. Role of MIP-1 alpha. J Clin Invest. 1995 Aug;96(2):931–939. doi: 10.1172/JCI118141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowie E. J., Owen C. A., Jr, Thompson J. H., Didisheim P. Platelet adhesiveness in von Willebrand's disease. Am J Clin Pathol. 1969 Jul;52(1):69–77. doi: 10.1093/ajcp/52.1.69. [DOI] [PubMed] [Google Scholar]
  6. Gutowski S., Smrcka A., Nowak L., Wu D. G., Simon M., Sternweis P. C. Antibodies to the alpha q subfamily of guanine nucleotide-binding regulatory protein alpha subunits attenuate activation of phosphatidylinositol 4,5-bisphosphate hydrolysis by hormones. J Biol Chem. 1991 Oct 25;266(30):20519–20524. [PubMed] [Google Scholar]
  7. Hepler J. R., Kozasa T., Smrcka A. V., Simon M. I., Rhee S. G., Sternweis P. C., Gilman A. G. Purification from Sf9 cells and characterization of recombinant Gq alpha and G11 alpha. Activation of purified phospholipase C isozymes by G alpha subunits. J Biol Chem. 1993 Jul 5;268(19):14367–14375. [PubMed] [Google Scholar]
  8. Jiang M., Pandey S., Tran V. T., Fong H. K. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3907–3911. doi: 10.1073/pnas.88.9.3907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson G. J., Leis L. A., Dunlop P. C. Thromboxane-insensitive dog platelets have impaired activation of phospholipase C due to receptor-linked G protein dysfunction. J Clin Invest. 1993 Nov;92(5):2469–2479. doi: 10.1172/JCI116855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson G. J., Leis L. A., Rao G. H., White J. G. Arachidonate-induced platelet aggregation in the dog. Thromb Res. 1979 Jan;14(1):147–154. doi: 10.1016/0049-3848(79)90033-1. [DOI] [PubMed] [Google Scholar]
  11. Kay N. E., Perri R. T. Evidence that large granular lymphocytes from B-CLL patients with hypogammaglobulinemia down-regulate B-cell immunoglobulin synthesis. Blood. 1989 Mar;73(4):1016–1019. [PubMed] [Google Scholar]
  12. Kesselring F., Spicher K., Porzig H. Changes in G protein pattern and in G protein-dependent signaling during erythropoietin- and dimethylsulfoxide-induced differentiation of murine erythroleukemia cells. Blood. 1994 Dec 15;84(12):4088–4098. [PubMed] [Google Scholar]
  13. Kim G. D., Milligan G. Concurrent specific immunological detection of both primate and rodent forms of the guanine nucleotide binding protein G11 alpha following their coexpression. Biochim Biophys Acta. 1994 Jul 21;1222(3):369–374. doi: 10.1016/0167-4889(94)90042-6. [DOI] [PubMed] [Google Scholar]
  14. Knezevic I., Borg C., Le Breton G. C. Identification of Gq as one of the G-proteins which copurify with human platelet thromboxane A2/prostaglandin H2 receptors. J Biol Chem. 1993 Dec 5;268(34):26011–26017. [PubMed] [Google Scholar]
  15. Kozasa T., Hepler J. R., Smrcka A. V., Simon M. I., Rhee S. G., Sternweis P. C., Gilman A. G. Purification and characterization of recombinant G16 alpha from Sf9 cells: activation of purified phospholipase C isozymes by G-protein alpha subunits. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9176–9180. doi: 10.1073/pnas.90.19.9176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee C. H., Park D., Wu D., Rhee S. G., Simon M. I. Members of the Gq alpha subunit gene family activate phospholipase C beta isozymes. J Biol Chem. 1992 Aug 15;267(23):16044–16047. [PubMed] [Google Scholar]
  17. Maurice D. H., Waldo G. L., Morris A. J., Nicholas R. A., Harden T. K. Identification of G alpha 11 as the phospholipase C-activating G-protein of turkey erythrocytes. Biochem J. 1993 Mar 15;290(Pt 3):765–770. doi: 10.1042/bj2900765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Milligan G., Mullaney I., McCallum J. F. Distribution and relative levels of expression of the phosphoinositidase-C-linked G-proteins Gq alpha and G11 alpha: absence of G11 alpha in human platelets and haemopoietically derived cell lines. Biochim Biophys Acta. 1993 Nov 7;1179(2):208–212. doi: 10.1016/0167-4889(93)90143-d. [DOI] [PubMed] [Google Scholar]
  19. Milligan G. Specificity and functional applications of antipeptide antisera which identify G-protein alpha subunits. Methods Enzymol. 1994;237:268–283. doi: 10.1016/s0076-6879(94)37068-0. [DOI] [PubMed] [Google Scholar]
  20. Nagata K., Okano Y., Nozawa Y. Identification of heterotrimeric GTP-binding proteins in human megakaryoblastic leukemia cell line, MEG-01, and their alteration during cellular differentiation. Life Sci. 1995;57(18):1675–1681. doi: 10.1016/0024-3205(95)02147-b. [DOI] [PubMed] [Google Scholar]
  21. Nakamura F., Ogata K., Shiozaki K., Kameyama K., Ohara K., Haga T., Nukada T. Identification of two novel GTP-binding protein alpha-subunits that lack apparent ADP-ribosylation sites for pertussis toxin. J Biol Chem. 1991 Jul 5;266(19):12676–12681. [PubMed] [Google Scholar]
  22. Newman P. J., Gorski J., White G. C., 2nd, Gidwitz S., Cretney C. J., Aster R. H. Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction. J Clin Invest. 1988 Aug;82(2):739–743. doi: 10.1172/JCI113656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Newman P. J., Seligsohn U., Lyman S., Coller B. S. The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3160–3164. doi: 10.1073/pnas.88.8.3160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Offermanns S., Heiler E., Spicher K., Schultz G. Gq and G11 are concurrently activated by bombesin and vasopressin in Swiss 3T3 cells. FEBS Lett. 1994 Aug 1;349(2):201–204. doi: 10.1016/0014-5793(94)00667-9. [DOI] [PubMed] [Google Scholar]
  25. Pang I. H., Sternweis P. C. Purification of unique alpha subunits of GTP-binding regulatory proteins (G proteins) by affinity chromatography with immobilized beta gamma subunits. J Biol Chem. 1990 Oct 25;265(30):18707–18712. [PubMed] [Google Scholar]
  26. Rambhatla L., Patel B., Dhanasekaran N., Latham K. E. Analysis of G protein alpha subunit mRNA abundance in preimplantation mouse embryos using a rapid, quantitative RT-PCR approach. Mol Reprod Dev. 1995 Jul;41(3):314–324. doi: 10.1002/mrd.1080410306. [DOI] [PubMed] [Google Scholar]
  27. Rhee S. G., Choi K. D. Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem. 1992 Jun 25;267(18):12393–12396. [PubMed] [Google Scholar]
  28. Shapira H., Way J., Lipinsky D., Oron Y., Battey J. F. Neuromedin B receptor, expressed in Xenopus laevis oocytes, selectively couples to G alpha q and not G alpha 11. FEBS Lett. 1994 Jul 4;348(1):89–92. doi: 10.1016/0014-5793(94)00570-2. [DOI] [PubMed] [Google Scholar]
  29. Shenker A., Goldsmith P., Unson C. G., Spiegel A. M. The G protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family. J Biol Chem. 1991 May 15;266(14):9309–9313. [PubMed] [Google Scholar]
  30. Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
  31. Smrcka A. V., Sternweis P. C. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. J Biol Chem. 1993 May 5;268(13):9667–9674. [PubMed] [Google Scholar]
  32. Strathmann M., Simon M. I. G protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9113–9117. doi: 10.1073/pnas.87.23.9113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thomas C. P., Dunn M. J., Mattera R. Ca2+ signalling in K562 human erythroleukaemia cells: effect of dimethyl sulphoxide and role of G-proteins in thrombin- and thromboxane A2-activated pathways. Biochem J. 1995 Nov 15;312(Pt 1):151–158. doi: 10.1042/bj3120151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ushikubi F., Nakamura K., Narumiya S. Functional reconstitution of platelet thromboxane A2 receptors with Gq and Gi2 in phospholipid vesicles. Mol Pharmacol. 1994 Nov;46(5):808–816. [PubMed] [Google Scholar]
  35. Wilkie T. M., Scherle P. A., Strathmann M. P., Slepak V. Z., Simon M. I. Characterization of G-protein alpha subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10049–10053. doi: 10.1073/pnas.88.22.10049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wu D. Q., Lee C. H., Rhee S. G., Simon M. I. Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem. 1992 Jan 25;267(3):1811–1817. [PubMed] [Google Scholar]
  37. de la Peña P., del Camino D., Pardo L. A., Domínguez P., Barros F. Gs couples thyrotropin-releasing hormone receptors expressed in Xenopus oocytes to phospholipase C. J Biol Chem. 1995 Feb 24;270(8):3554–3559. doi: 10.1074/jbc.270.8.3554. [DOI] [PubMed] [Google Scholar]
  38. van Willigen G., Donath J., Lapetina E. G., Akkerman J. W. Identification of alpha-subunits of trimeric GTP-binding proteins in human platelets by RT-PCR. Biochem Biophys Res Commun. 1995 Sep 5;214(1):254–262. doi: 10.1006/bbrc.1995.2282. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES