Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Nov 1;319(Pt 3):699–704. doi: 10.1042/bj3190699

Biochemical alterations in collagen IV induced by in vitro glycation.

H M Raabe 1, H Molsen 1, S M Mlinaric 1, Y Açil 1, G H Sinnecker 1, H Notbohm 1, K Kruse 1, P K Müller 1
PMCID: PMC1217845  PMID: 8920969

Abstract

Non-enzymic interactions of carbohydrates and proteins are a major feature of cumulative modification in basement membranes in the course of diabetic microvascular complications. To evaluate the significance of both glycation and glycoxidation reactions for subsequent alterations of biochemical properties, we examined the effects of in vitro glycation on distinct collagen IV domains under different experimental conditions. The 7 S domain and the major triple-helical domain from human placental collagen IV were incubated for various time intervals up to 14 days at 37 degrees C in the presence of different concentrations of either glucose or ribose under oxidative and antioxidative conditions. Carbohydrate-induced non-enzymic modification in two collagen IV domains was revealed by increased cross-linking and fluorescence. In addition, these non-enzymic modifications apparently have a major impact on molecular conformation and thermal stability of collagen IV, which in turn might influence both cell-matrix interactions and matrix assembly.

Full Text

The Full Text of this article is available as a PDF (310.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S. S., Tsilibary E. C., Charonis A. S. Nonenzymatic glycosylation-induced modifications of intact bovine kidney tubular basement membrane. J Clin Invest. 1993 Dec;92(6):3045–3052. doi: 10.1172/JCI116929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aruoma O. I., Chaudhary S. S., Grootveld M., Halliwell B. Binding of iron(II) ions to the pentose sugar 2-deoxyribose. J Inorg Biochem. 1989 Feb;35(2):149–155. doi: 10.1016/0162-0134(89)80007-8. [DOI] [PubMed] [Google Scholar]
  3. Aumailley M., Timpl R. Attachment of cells to basement membrane collagen type IV. J Cell Biol. 1986 Oct;103(4):1569–1575. doi: 10.1083/jcb.103.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bailey A. J., Sims T. J., Avery N. C., Halligan E. P. Non-enzymic glycation of fibrous collagen: reaction products of glucose and ribose. Biochem J. 1995 Jan 15;305(Pt 2):385–390. doi: 10.1042/bj3050385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bailey A. J., Sims T. J., Avery N. C., Miles C. A. Chemistry of collagen cross-links: glucose-mediated covalent cross-linking of type-IV collagen in lens capsules. Biochem J. 1993 Dec 1;296(Pt 2):489–496. doi: 10.1042/bj2960489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baynes J. W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991 Apr;40(4):405–412. doi: 10.2337/diab.40.4.405. [DOI] [PubMed] [Google Scholar]
  7. Chace K. V., Carubelli R., Nordquist R. E. The role of nonenzymatic glycosylation, transition metals, and free radicals in the formation of collagen aggregates. Arch Biochem Biophys. 1991 Aug 1;288(2):473–480. doi: 10.1016/0003-9861(91)90223-6. [DOI] [PubMed] [Google Scholar]
  8. Charonis A. S., Tsilbary E. C. Structural and functional changes of laminin and type IV collagen after nonenzymatic glycation. Diabetes. 1992 Oct;41 (Suppl 2):49–51. doi: 10.2337/diab.41.2.s49. [DOI] [PubMed] [Google Scholar]
  9. Dyer D. G., Blackledge J. A., Thorpe S. R., Baynes J. W. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem. 1991 Jun 25;266(18):11654–11660. [PubMed] [Google Scholar]
  10. Eble J. A., Golbik R., Mann K., Kühn K. The alpha 1 beta 1 integrin recognition site of the basement membrane collagen molecule [alpha 1(IV)]2 alpha 2(IV). EMBO J. 1993 Dec;12(12):4795–4802. doi: 10.1002/j.1460-2075.1993.tb06168.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fisher R. F., Hayes B. P. Macromolecular organization of collagen fibres in natural and tanned basement membrane. J Mol Biol. 1987 Nov 20;198(2):263–279. doi: 10.1016/0022-2836(87)90312-3. [DOI] [PubMed] [Google Scholar]
  12. Fu M. X., Knecht K. J., Thorpe S. R., Baynes J. W. Role of oxygen in cross-linking and chemical modification of collagen by glucose. Diabetes. 1992 Oct;41 (Suppl 2):42–48. doi: 10.2337/diab.41.2.s42. [DOI] [PubMed] [Google Scholar]
  13. Fu M. X., Wells-Knecht K. J., Blackledge J. A., Lyons T. J., Thorpe S. R., Baynes J. W. Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes. 1994 May;43(5):676–683. doi: 10.2337/diab.43.5.676. [DOI] [PubMed] [Google Scholar]
  14. Glanville R. W., Rauter A., Fietzek P. P. Isolation and characterization of a native placental basement-membrane collagen and its component alpha chains. Eur J Biochem. 1979 Apr 2;95(2):383–389. doi: 10.1111/j.1432-1033.1979.tb12976.x. [DOI] [PubMed] [Google Scholar]
  15. Hasegawa G., Hunter A. J., Charonis A. S. Matrix nonenzymatic glycosylation leads to altered cellular phenotype and intracellular tyrosine phosphorylation. J Biol Chem. 1995 Feb 17;270(7):3278–3283. doi: 10.1074/jbc.270.7.3278. [DOI] [PubMed] [Google Scholar]
  16. Kent M. J., Light N. D., Bailey A. J. Evidence for glucose-mediated covalent cross-linking of collagen after glycosylation in vitro. Biochem J. 1985 Feb 1;225(3):745–752. doi: 10.1042/bj2250745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Laurie G. W., Bing J. T., Kleinman H. K., Hassell J. R., Aumailley M., Martin G. R., Feldmann R. J. Localization of binding sites for laminin, heparan sulfate proteoglycan and fibronectin on basement membrane (type IV) collagen. J Mol Biol. 1986 May 5;189(1):205–216. doi: 10.1016/0022-2836(86)90391-8. [DOI] [PubMed] [Google Scholar]
  19. MacWright R. S., Benson V. A., Lovello K. T., van der Rest M., Fietzek P. P. Isolation and characterization of pepsin-solubilized human basement membrane (type IV) collagen peptides. Biochemistry. 1983 Oct 11;22(21):4940–4948. doi: 10.1021/bi00290a010. [DOI] [PubMed] [Google Scholar]
  20. Mogensen C. E., Chachati A., Christensen C. K., Close C. F., Deckert T., Hommel E., Kastrup J., Lefebvre P., Mathiesen E. R., Feldt-Rasmussen B. Microalbuminuria: an early marker of renal involvement in diabetes. Uremia Invest. 1985;9(2):85–95. doi: 10.3109/08860228509088195. [DOI] [PubMed] [Google Scholar]
  21. Monnier V. M., Kohn R. R., Cerami A. Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci U S A. 1984 Jan;81(2):583–587. doi: 10.1073/pnas.81.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Parthasarathy N., Spiro R. G. Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes. 1982 Aug;31(8 Pt 1):738–741. doi: 10.2337/diab.31.8.738. [DOI] [PubMed] [Google Scholar]
  23. REYNOLDS T. M. CHEMISTRY OF NONENZYMIC BROWNING. I. THE REACTION BETWEEN ALDOSES AND AMINES. Adv Food Res. 1963;12:1–52. doi: 10.1016/s0065-2628(08)60005-1. [DOI] [PubMed] [Google Scholar]
  24. Reiser K. M., Amigable M. A., Last J. A. Nonenzymatic glycation of type I collagen. The effects of aging on preferential glycation sites. J Biol Chem. 1992 Dec 5;267(34):24207–24216. [PubMed] [Google Scholar]
  25. Ricard-Blum S., Ville G. Collagen cross-linking. Cell Mol Biol. 1988;34(6):581–590. [PubMed] [Google Scholar]
  26. Risteli J., Bächinger H. P., Engel J., Furthmayr H., Timpl R. 7-S collagen: characterization of an unusual basement membrane structure. Eur J Biochem. 1980;108(1):239–250. doi: 10.1111/j.1432-1033.1980.tb04717.x. [DOI] [PubMed] [Google Scholar]
  27. Robins S. P., Bailey A. J. Age-related changes in collagen: the identification of reducible lysine-carbohydrate condensation products. Biochem Biophys Res Commun. 1972 Jul 11;48(1):76–84. doi: 10.1016/0006-291x(72)90346-4. [DOI] [PubMed] [Google Scholar]
  28. Sell D. R., Monnier V. M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 1989 Dec 25;264(36):21597–21602. [PubMed] [Google Scholar]
  29. Shaw S. M., Crabbe M. J. Monitoring the progress of non-enzymatic glycation in vitro. Int J Pept Protein Res. 1994 Dec;44(6):594–602. doi: 10.1111/j.1399-3011.1994.tb01149.x. [DOI] [PubMed] [Google Scholar]
  30. Shimomura H., Spiro R. G. Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes. Decreased levels of heparan sulfate proteoglycan and laminin. Diabetes. 1987 Mar;36(3):374–381. doi: 10.2337/diab.36.3.374. [DOI] [PubMed] [Google Scholar]
  31. Tanaka S., Avigad G., Brodsky B., Eikenberry E. F. Glycation induces expansion of the molecular packing of collagen. J Mol Biol. 1988 Sep 20;203(2):495–505. doi: 10.1016/0022-2836(88)90015-0. [DOI] [PubMed] [Google Scholar]
  32. Tarsio J. F., Reger L. A., Furcht L. T. Decreased interaction of fibronectin, type IV collagen, and heparin due to nonenzymatic glycation. Implications for diabetes mellitus. Biochemistry. 1987 Feb 24;26(4):1014–1020. doi: 10.1021/bi00378a006. [DOI] [PubMed] [Google Scholar]
  33. Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989 Apr 1;180(3):487–502. doi: 10.1111/j.1432-1033.1989.tb14673.x. [DOI] [PubMed] [Google Scholar]
  34. Tsilibary E. C., Charonis A. S., Reger L. A., Wohlhueter R. M., Furcht L. T. The effect of nonenzymatic glucosylation on the binding of the main noncollagenous NC1 domain to type IV collagen. J Biol Chem. 1988 Mar 25;263(9):4302–4308. [PubMed] [Google Scholar]
  35. Weber S., Engel J., Wiedemann H., Glanville R. W., Timpl R. Subunit structure and assembly of the globular domain of basement-membrane collagen type IV. Eur J Biochem. 1984 Mar 1;139(2):401–410. doi: 10.1111/j.1432-1033.1984.tb08019.x. [DOI] [PubMed] [Google Scholar]
  36. Wolff S. P., Dean R. T. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J. 1987 Jul 1;245(1):243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wolff S. P., Jiang Z. Y., Hunt J. V. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med. 1991;10(5):339–352. doi: 10.1016/0891-5849(91)90040-a. [DOI] [PubMed] [Google Scholar]
  38. Woodley D. T., Rao C. N., Hassell J. R., Liotta L. A., Martin G. R., Kleinman H. K. Interactions of basement membrane components. Biochim Biophys Acta. 1983 Dec 27;761(3):278–283. doi: 10.1016/0304-4165(83)90077-6. [DOI] [PubMed] [Google Scholar]
  39. Yang C. L., Rui H., Mosler S., Notbohm H., Sawaryn A., Müller P. K. Collagen II from articular cartilage and annulus fibrosus. Structural and functional implication of tissue specific posttranslational modifications of collagen molecules. Eur J Biochem. 1993 May 1;213(3):1297–1302. doi: 10.1111/j.1432-1033.1993.tb17881.x. [DOI] [PubMed] [Google Scholar]
  40. Yang C., Notbohm H., Açil Y., Heifeng R., Bierbaum S., Müller P. K. In vitro fibrillogenesis of collagen II from pig vitreous humour. Biochem J. 1995 Mar 15;306(Pt 3):871–875. doi: 10.1042/bj3060871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yurchenco P. D., Schittny J. C. Molecular architecture of basement membranes. FASEB J. 1990 Apr 1;4(6):1577–1590. doi: 10.1096/fasebj.4.6.2180767. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES