Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 1;321(Pt 3):615–621. doi: 10.1042/bj3210615

Modelling the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase on adenylate kinase.

L Bertrand 1, D Vertommen 1, E Depiereux 1, L Hue 1, M H Rider 1, E Feytmans 1
PMCID: PMC1218114  PMID: 9032445

Abstract

Simultaneous multiple alignment of available sequences of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase revealed several segments of conserved residues in the 2-kinase domain. The sequence of the kinase domain was also compared with proteins of known three-dimensional structure. No similarity was found between the kinase domain of 6-phosphofructo-2-kinase and 6-phosphofructo-1-kinase. This questions the modelling of the 2-kinase domain on bacterial 6-phosphofructo-1-kinase that has previously been proposed [Bazan, Fletterick and Pilkis (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646]. However, sequence similarities were found between the 2-kinase domain and several nucleotide-binding proteins, the most similar being adenylate kinase. A structural model of the 2-kinase domain based on adenylate kinase is proposed. It accommodates all the results of site-directed mutagenesis studies carried out to date on residues in the 2-kinase domain. It also allows residues potentially involved in catalysis and/or substrate binding to be predicted.

Full Text

The Full Text of this article is available as a PDF (769.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Algaier J., Uyeda K. Molecular cloning, sequence analysis, and expression of a human liver cDNA coding for fructose-6-P,2-kinase:fructose-2,6-bisphosphatase. Biochem Biophys Res Commun. 1988 May 31;153(1):328–333. doi: 10.1016/s0006-291x(88)81226-9. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Bazan J. F., Fletterick R. J., Pilkis S. J. Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9642–9646. doi: 10.1073/pnas.86.24.9642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger S. A., Evans P. R. Active-site mutants altering the cooperativity of E. coli phosphofructokinase. Nature. 1990 Feb 8;343(6258):575–576. doi: 10.1038/343575a0. [DOI] [PubMed] [Google Scholar]
  5. Berger S. A., Evans P. R. Site-directed mutagenesis identifies catalytic residues in the active site of Escherichia coli phosphofructokinase. Biochemistry. 1992 Sep 29;31(38):9237–9242. doi: 10.1021/bi00153a017. [DOI] [PubMed] [Google Scholar]
  6. Bertrand L., Deprez J., Vertommen D., Di Pietro A., Hue L., Rider M. H. Site-directed mutagenesis of Lys-174, Asp-179 and Asp-191 in the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochem J. 1997 Feb 1;321(Pt 3):623–627. doi: 10.1042/bj3210623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bertrand L., Vertommen D., Feytmans E., Di Pietro A., Rider M. H., Hue L. Mutagenesis of charged residues in a conserved sequence in the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochem J. 1997 Feb 1;321(Pt 3):609–614. doi: 10.1042/bj3210609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brune M., Schumann R., Wittinghofer F. Cloning and sequencing of the adenylate kinase gene (adk) of Escherichia coli. Nucleic Acids Res. 1985 Oct 11;13(19):7139–7151. doi: 10.1093/nar/13.19.7139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Byeon L., Shi Z., Tsai M. D. Mechanism of adenylate kinase. The "essential lysine" helps to orient the phosphates and the active site residues to proper conformations. Biochemistry. 1995 Mar 14;34(10):3172–3182. doi: 10.1021/bi00010a006. [DOI] [PubMed] [Google Scholar]
  10. Castella-Escola J., Ojcius D. M., LeBoulch P., Joulin V., Blouquit Y., Garel M. C., Valentin C., Rosa R., Climent-Romeo F., Cohen-Solal M. Isolation and characterization of the gene encoding the muscle-specific isozyme of human phosphoglycerate mutase. Gene. 1990 Jul 16;91(2):225–232. doi: 10.1016/0378-1119(90)90092-6. [DOI] [PubMed] [Google Scholar]
  11. Crepin K. M., Darville M. I., Hue L., Rousseau G. G. Characterization of distinct mRNAs coding for putative isozymes of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Eur J Biochem. 1989 Aug 1;183(2):433–440. doi: 10.1111/j.1432-1033.1989.tb14946.x. [DOI] [PubMed] [Google Scholar]
  12. Crepin K. M., Vertommen D., Dom G., Hue L., Rider M. H. Rat muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Study of the kinase domain by site-directed mutagenesis. J Biol Chem. 1993 Jul 15;268(20):15277–15284. [PubMed] [Google Scholar]
  13. Darville M. I., Crepin K. M., Vandekerckhove J., Van Damme J., Octave J. N., Rider M. H., Marchand M. J., Hue L., Rousseau G. G. Complete nucleotide sequence coding for rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase derived from a cDNA clone. FEBS Lett. 1987 Nov 30;224(2):317–321. doi: 10.1016/0014-5793(87)80476-3. [DOI] [PubMed] [Google Scholar]
  14. Depiereux E., Feytmans E. MATCH-BOX: a fundamentally new algorithm for the simultaneous alignment of several protein sequences. Comput Appl Biosci. 1992 Oct;8(5):501–509. doi: 10.1093/bioinformatics/8.5.501. [DOI] [PubMed] [Google Scholar]
  15. Depiereux E., Feytmans E. Simultaneous and multivariate alignment of protein sequences: correspondence between physicochemical profiles and structurally conserved regions (SCR). Protein Eng. 1991 Aug;4(6):603–613. doi: 10.1093/protein/4.6.603. [DOI] [PubMed] [Google Scholar]
  16. Diederichs K., Schulz G. E. The refined structure of the complex between adenylate kinase from beef heart mitochondrial matrix and its substrate AMP at 1.85 A resolution. J Mol Biol. 1991 Feb 5;217(3):541–549. doi: 10.1016/0022-2836(91)90756-v. [DOI] [PubMed] [Google Scholar]
  17. Elson A., Levanon D., Brandeis M., Dafni N., Bernstein Y., Danciger E., Groner Y. The structure of the human liver-type phosphofructokinase gene. Genomics. 1990 May;7(1):47–56. doi: 10.1016/0888-7543(90)90517-x. [DOI] [PubMed] [Google Scholar]
  18. French B. A., Chang S. H. Nucleotide sequence of the phosphofructokinase gene from Bacillus stearothermophilus and comparison with the homologous Escherichia coli gene. Gene. 1987;54(1):65–71. doi: 10.1016/0378-1119(87)90348-9. [DOI] [PubMed] [Google Scholar]
  19. Hasemann C. A., Istvan E. S., Uyeda K., Deisenhofer J. The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies. Structure. 1996 Sep 15;4(9):1017–1029. doi: 10.1016/s0969-2126(96)00109-8. [DOI] [PubMed] [Google Scholar]
  20. Heil A., Müller G., Noda L., Pinder T., Schirmer H., Schirmer I., von Zabern I. The amino-acid sequence of sarcine adenylate kinase from skeletal muscle. Eur J Biochem. 1974 Mar 15;43(1):131–144. doi: 10.1111/j.1432-1033.1974.tb03393.x. [DOI] [PubMed] [Google Scholar]
  21. Hellinga H. W., Evans P. R. Mutations in the active site of Escherichia coli phosphofructokinase. Nature. 1987 Jun 4;327(6121):437–439. doi: 10.1038/327437a0. [DOI] [PubMed] [Google Scholar]
  22. Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hue L., Rider M. H. Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem J. 1987 Jul 15;245(2):313–324. doi: 10.1042/bj2450313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kjeldgaard M., Nyborg J. Refined structure of elongation factor EF-Tu from Escherichia coli. J Mol Biol. 1992 Feb 5;223(3):721–742. doi: 10.1016/0022-2836(92)90986-t. [DOI] [PubMed] [Google Scholar]
  25. Kretschmer M., Fraenkel D. G. Yeast 6-phosphofructo-2-kinase: sequence and mutant. Biochemistry. 1991 Nov 5;30(44):10663–10672. doi: 10.1021/bi00108a009. [DOI] [PubMed] [Google Scholar]
  26. Kurland I., Chapman B., Lee Y. H., Pilkis S. Evolutionary reengineering of the phosphofructokinase active site: ARG-104 does not stabilize the transition state in 6-phosphofructo-2-kinase. Biochem Biophys Res Commun. 1995 Aug 15;213(2):663–672. doi: 10.1006/bbrc.1995.2183. [DOI] [PubMed] [Google Scholar]
  27. Laine R., Deville-Bonne D., Auzat I., Garel J. R. Interaction between the carboxyl groups of Asp127 and Asp129 in the active site of Escherichia coli phosphofructokinase. Eur J Biochem. 1992 Aug 1;207(3):1109–1114. doi: 10.1111/j.1432-1033.1992.tb17148.x. [DOI] [PubMed] [Google Scholar]
  28. Lange A. J., el-Maghrabi M. R., Pilkis S. J. Isolation of bovine liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase cDNA: bovine liver and heart forms of the enzyme are separate gene products. Arch Biochem Biophys. 1991 Oct;290(1):258–263. doi: 10.1016/0003-9861(91)90617-r. [DOI] [PubMed] [Google Scholar]
  29. Lee Y. H., Ogata C., Pflugrath J. W., Levitt D. G., Sarma R., Banaszak L. J., Pilkis S. J. Crystal structure of the rat liver fructose-2,6-bisphosphatase based on selenomethionine multiwavelength anomalous dispersion phases. Biochemistry. 1996 May 14;35(19):6010–6019. doi: 10.1021/bi9600613. [DOI] [PubMed] [Google Scholar]
  30. Li L., Lange A. J., Pilkis S. J. Isolation of a cDNA for chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochem Biophys Res Commun. 1993 Jan 29;190(2):397–405. doi: 10.1006/bbrc.1993.1061. [DOI] [PubMed] [Google Scholar]
  31. Logan K. M., Knight K. L. Mutagenesis of the P-loop motif in the ATP binding site of the RecA protein from Escherichia coli. J Mol Biol. 1993 Aug 20;232(4):1048–1059. doi: 10.1006/jmbi.1993.1459. [DOI] [PubMed] [Google Scholar]
  32. Magdolen V., Oechsner U., Bandlow W. The complete nucleotide sequence of the gene coding for yeast adenylate kinase. Curr Genet. 1987;12(6):405–411. doi: 10.1007/BF00434817. [DOI] [PubMed] [Google Scholar]
  33. Müller C. W., Schulz G. E. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol. 1992 Mar 5;224(1):159–177. doi: 10.1016/0022-2836(92)90582-5. [DOI] [PubMed] [Google Scholar]
  34. Paravicini G., Kretschmer M. The yeast FBP26 gene codes for a fructose-2,6-bisphosphatase. Biochemistry. 1992 Aug 11;31(31):7126–7133. doi: 10.1021/bi00146a014. [DOI] [PubMed] [Google Scholar]
  35. Pilkis S. J., Claus T. H., Kurland I. J., Lange A. J. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme. Annu Rev Biochem. 1995;64:799–835. doi: 10.1146/annurev.bi.64.070195.004055. [DOI] [PubMed] [Google Scholar]
  36. Rider M. H., Crepin K. M., De Cloedt M., Bertrand L., Hue L. Site-directed mutagenesis of rat muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: role of Asp-130 in the 2-kinase domain. Biochem J. 1994 May 15;300(Pt 1):111–115. doi: 10.1042/bj3000111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rider M. H., Crepin K. M., De Cloedt M., Bertrand L., Vertommen D., Hue L. Study of the roles of Arg-104 and Arg-225 in the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by site-directed mutagenesis. Biochem J. 1995 Jul 1;309(Pt 1):341–346. doi: 10.1042/bj3090341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rost B., Sander C., Schneider R. PHD--an automatic mail server for protein secondary structure prediction. Comput Appl Biosci. 1994 Feb;10(1):53–60. doi: 10.1093/bioinformatics/10.1.53. [DOI] [PubMed] [Google Scholar]
  39. Sakai A., Watanabe F., Furuya E. Cloning of cDNAs for fructose 6-phosphate 2-kinase/fructose 2,6-bisphosphatase from frog skeletal muscle and liver, and their expression in skeletal muscle. Biochem Biophys Res Commun. 1994 Feb 15;198(3):1099–1106. doi: 10.1006/bbrc.1994.1156. [DOI] [PubMed] [Google Scholar]
  40. Sakata J., Abe Y., Uyeda K. Molecular cloning of the DNA and expression and characterization of rat testes fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. J Biol Chem. 1991 Aug 25;266(24):15764–15770. [PubMed] [Google Scholar]
  41. Sakata J., Uyeda K. Bovine heart fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase: complete amino acid sequence and localization of phosphorylation sites. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4951–4955. doi: 10.1073/pnas.87.13.4951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schulz G. E., Elzinga M., Marx F., Schrimer R. H. Three dimensional structure of adenyl kinase. Nature. 1974 Jul 12;250(462):120–123. doi: 10.1038/250120a0. [DOI] [PubMed] [Google Scholar]
  43. Traut T. W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem. 1994 May 15;222(1):9–19. doi: 10.1111/j.1432-1033.1994.tb18835.x. [DOI] [PubMed] [Google Scholar]
  44. Tsujikawa T., Watanabe F., Uyeda K. Hexose phosphate binding sites of fructose 6-phosphate,2-kinase:fructose 2,6-bisphosphatase. Biochemistry. 1995 May 16;34(19):6389–6393. doi: 10.1021/bi00019a018. [DOI] [PubMed] [Google Scholar]
  45. Vertommen D., Bertrand L., Sontag B., Di Pietro A., Louckx M. P., Vidal H., Hue L., Rider M. H. The ATP-binding site in the 2-kinase domain of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Study of the role of Lys-54 and Thr-55 by site-directed mutagenesis. J Biol Chem. 1996 Jul 26;271(30):17875–17880. doi: 10.1074/jbc.271.30.17875. [DOI] [PubMed] [Google Scholar]
  46. Vinals C., Depiereux E., Feytmans E. Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase. Biochem Biophys Res Commun. 1993 Apr 15;192(1):182–188. doi: 10.1006/bbrc.1993.1398. [DOI] [PubMed] [Google Scholar]
  47. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Watanabe F., Sakai A., Furuya E., Uyeda K. Molecular cloning and tissue specific expression of fructose 6-phosphate,2-kinase:fructose 2,6-bisphosphatase of rat brain. Biochem Biophys Res Commun. 1994 Jan 14;198(1):335–340. doi: 10.1006/bbrc.1994.1047. [DOI] [PubMed] [Google Scholar]
  49. White M. F., Fothergill-Gilmore L. A. Sequence of the gene encoding phosphoglycerate mutase from Saccharomyces cerevisiae. FEBS Lett. 1988 Mar 14;229(2):383–387. doi: 10.1016/0014-5793(88)81161-x. [DOI] [PubMed] [Google Scholar]
  50. Yamada M., Shahjahan M., Tanabe T., Kishi F., Nakazawa A. Cloning and characterization of cDNA for mitochondrial GTP:AMP phosphotransferase of bovine liver. J Biol Chem. 1989 Nov 15;264(32):19192–19199. [PubMed] [Google Scholar]
  51. el-Maghrabi M. R., Pate T. M., D'Angelo G., Correia J. J., Lively M. O., Pilkis S. J. Rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Identification of essential sulfhydryl residues in the primary sequence of the enzyme. J Biol Chem. 1987 Aug 25;262(24):11714–11720. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES