Abstract
The C-terminal fibronectin-type-III-like module of the tissue factor (TF) extracellular domain plays a requisite role in the activation of macromolecular substrates by factor VIIa (VIIa) in complex with TF. Unlike the mutations Lys165-->Ala, Lys166-->Ala in TF, which prevent efficient proteolysis of factor X, we found that the coagulant defect of a site-specific Trp158-->Arg, Ser160-->Gly replacement mutant of TF is largely attributable to the inability of TF to efficiently support the activation of the bound zymogen VII to the active protease VIIa. Binding studies demonstrated comparable affinity of binding of VIIa or VII by wild-type TF and TF(R158G160). In comparison with wild-type TF, the catalytic efficiency of factor X activation was reduced 56-fold with TF(A165A166) as the cofactor, but only 3.5-fold with TF(R165G160). The activation of VII bound to TF by factor Xa or VIIa was reduced 2-fold in the presence of TF(R158G160) and 7-8-fold with TF(A165A166). This suggests that the molecular recognition of VII in complex with TF by the enzymes TF-VIIa and factor Xa are similar. Generation of factor IXa by TF(R158G160)-VIIa was unaltered, but reduced 2-fold with TF(A165A166). In addition, the mutations affected the cleavage of the two scissile bonds of factor IX differently, providing further support for the idea that the cofactor, TF, influences the fine specificity of activation of macromolecular substrates by the TF-VIIa complex.
Full Text
The Full Text of this article is available as a PDF (358.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banner D. W., D'Arcy A., Chène C., Winkler F. K., Guha A., Konigsberg W. H., Nemerson Y., Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 1996 Mar 7;380(6569):41–46. doi: 10.1038/380041a0. [DOI] [PubMed] [Google Scholar]
- Butenas S., Orfeo T., Lawson J. H., Mann K. G. Aminonaphthalenesulfonamides, a new class of modifiable fluorescent detecting groups and their use in substrates for serine protease enzymes. Biochemistry. 1992 Jun 16;31(23):5399–5411. doi: 10.1021/bi00138a023. [DOI] [PubMed] [Google Scholar]
- Fair D. S., Plow E. F., Edgington T. S. Combined functional and immunochemical analysis of normal and abnormal human factor X. J Clin Invest. 1979 Oct;64(4):884–894. doi: 10.1172/JCI109554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
- Hoffman M., Monroe D. M., Roberts H. R. Human monocytes support factor X activation by factor VIIa, independent of tissue factor: implications for the therapeutic mechanism of high-dose factor VIIa in hemophilia. Blood. 1994 Jan 1;83(1):38–42. [PubMed] [Google Scholar]
- Jordan S. P., Waxman L., Smith D. E., Vlasuk G. P. Tick anticoagulant peptide: kinetic analysis of the recombinant inhibitor with blood coagulation factor Xa. Biochemistry. 1990 Dec 18;29(50):11095–11100. doi: 10.1021/bi00502a012. [DOI] [PubMed] [Google Scholar]
- Kelley R. F., Costas K. E., O'Connell M. P., Lazarus R. A. Analysis of the factor VIIa binding site on human tissue factor: effects of tissue factor mutations on the kinetics and thermodynamics of binding. Biochemistry. 1995 Aug 22;34(33):10383–10392. doi: 10.1021/bi00033a009. [DOI] [PubMed] [Google Scholar]
- Komiyama Y., Pedersen A. H., Kisiel W. Proteolytic activation of human factors IX and X by recombinant human factor VIIa: effects of calcium, phospholipids, and tissue factor. Biochemistry. 1990 Oct 9;29(40):9418–9425. doi: 10.1021/bi00492a016. [DOI] [PubMed] [Google Scholar]
- Krishnaswamy S., Field K. A., Edgington T. S., Morrissey J. H., Mann K. G. Role of the membrane surface in the activation of human coagulation factor X. J Biol Chem. 1992 Dec 25;267(36):26110–26120. [PubMed] [Google Scholar]
- Krishnaswamy S. The interaction of human factor VIIa with tissue factor. J Biol Chem. 1992 Nov 25;267(33):23696–23706. [PubMed] [Google Scholar]
- Lawson J. H., Butenas S., Mann K. G. The evaluation of complex-dependent alterations in human factor VIIa. J Biol Chem. 1992 Mar 5;267(7):4834–4843. [PubMed] [Google Scholar]
- Lawson J. H., Mann K. G. Cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation. J Biol Chem. 1991 Jun 15;266(17):11317–11327. [PubMed] [Google Scholar]
- Martin D. M., Boys C. W., Ruf W. Tissue factor: molecular recognition and cofactor function. FASEB J. 1995 Jul;9(10):852–859. doi: 10.1096/fasebj.9.10.7615155. [DOI] [PubMed] [Google Scholar]
- Martin D. M., O'Brien D. P., Tuddenham E. G., Byfield P. G. Synthesis and characterization of wild-type and variant gamma-carboxyglutamic acid-containing domains of factor VII. Biochemistry. 1993 Dec 21;32(50):13949–13955. doi: 10.1021/bi00213a026. [DOI] [PubMed] [Google Scholar]
- Masys D. R., Bajaj S. P., Rapaport S. I. Activation of human factor VII by activated factors IX and X. Blood. 1982 Nov;60(5):1143–1150. [PubMed] [Google Scholar]
- Morrissey J. H., Macik B. G., Neuenschwander P. F., Comp P. C. Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood. 1993 Feb 1;81(3):734–744. [PubMed] [Google Scholar]
- Nemerson Y., Repke D. Tissue factor accelerates the activation of coagulation factor VII: the role of a bifunctional coagulation cofactor. Thromb Res. 1985 Nov 1;40(3):351–358. doi: 10.1016/0049-3848(85)90270-1. [DOI] [PubMed] [Google Scholar]
- Neuenschwander P. F., Fiore M. M., Morrissey J. H. Factor VII autoactivation proceeds via interaction of distinct protease-cofactor and zymogen-cofactor complexes. Implications of a two-dimensional enzyme kinetic mechanism. J Biol Chem. 1993 Oct 15;268(29):21489–21492. [PubMed] [Google Scholar]
- Neuenschwander P. F., Morrissey J. H. Deletion of the membrane anchoring region of tissue factor abolishes autoactivation of factor VII but not cofactor function. Analysis of a mutant with a selective deficiency in activity. J Biol Chem. 1992 Jul 15;267(20):14477–14482. [PubMed] [Google Scholar]
- O'Brien D. P., Kemball-Cook G., Hutchinson A. M., Martin D. M., Johnson D. J., Byfield P. G., Takamiya O., Tuddenham E. G., McVey J. H. Surface plasmon resonance studies of the interaction between factor VII and tissue factor. Demonstration of defective tissue factor binding in a variant FVII molecule (FVII-R79Q). Biochemistry. 1994 Nov 29;33(47):14162–14169. doi: 10.1021/bi00251a027. [DOI] [PubMed] [Google Scholar]
- Osterud B., Rapaport S. I. Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5260–5264. doi: 10.1073/pnas.74.12.5260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen A. H., Lund-Hansen T., Bisgaard-Frantzen H., Olsen F., Petersen L. C. Autoactivation of human recombinant coagulation factor VII. Biochemistry. 1989 Nov 28;28(24):9331–9336. doi: 10.1021/bi00450a013. [DOI] [PubMed] [Google Scholar]
- Rao L. V., Rapaport S. I. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6687–6691. doi: 10.1073/pnas.85.18.6687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao L. V., Ruf W. Tissue factor residues Lys165 and Lys166 are essential for rapid formation of the quaternary complex of tissue factor.VIIa with Xa.tissue factor pathway inhibitor. Biochemistry. 1995 Aug 29;34(34):10867–10871. doi: 10.1021/bi00034a020. [DOI] [PubMed] [Google Scholar]
- Rehemtulla A., Ruf W., Miles D. J., Edgington T. S. The third Trp-Lys-Ser (WKS) tripeptide motif in tissue factor is associated with a function site. Biochem J. 1992 Mar 15;282(Pt 3):737–740. doi: 10.1042/bj2820737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rezaie A. R., Neuenschwander P. F., Morrissey J. H., Esmon C. T. Analysis of the functions of the first epidermal growth factor-like domain of factor X. J Biol Chem. 1993 Apr 15;268(11):8176–8180. [PubMed] [Google Scholar]
- Roy S., Hass P. E., Bourell J. H., Henzel W. J., Vehar G. A. Lysine residues 165 and 166 are essential for the cofactor function of tissue factor. J Biol Chem. 1991 Nov 15;266(32):22063–22066. [PubMed] [Google Scholar]
- Ruf W., Edgington T. S. Structural biology of tissue factor, the initiator of thrombogenesis in vivo. FASEB J. 1994 Apr 1;8(6):385–390. [PubMed] [Google Scholar]
- Ruf W., Edgington T. S. Two sites in the tissue factor extracellular domain mediate the recognition of the ligand factor VIIa. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8430–8434. doi: 10.1073/pnas.88.19.8430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruf W. Factor VIIa residue Arg290 is required for efficient activation of the macromolecular substrate factor X. Biochemistry. 1994 Sep 27;33(38):11631–11636. doi: 10.1021/bi00204a026. [DOI] [PubMed] [Google Scholar]
- Ruf W., Kalnik M. W., Lund-Hansen T., Edgington T. S. Characterization of factor VII association with tissue factor in solution. High and low affinity calcium binding sites in factor VII contribute to functionally distinct interactions. J Biol Chem. 1991 Aug 25;266(24):15719–15725. [PubMed] [Google Scholar]
- Ruf W., Miles D. J., Rehemtulla A., Edgington T. S. Cofactor residues lysine 165 and 166 are critical for protein substrate recognition by the tissue factor-factor VIIa protease complex. J Biol Chem. 1992 Mar 25;267(9):6375–6381. [PubMed] [Google Scholar]
- Ruf W., Miles D. J., Rehemtulla A., Edgington T. S. Mutational analysis of receptor and cofactor function of tissue factor. Methods Enzymol. 1993;222:209–224. doi: 10.1016/0076-6879(93)22015-8. [DOI] [PubMed] [Google Scholar]
- Ruf W., Miles D. J., Rehemtulla A., Edgington T. S. Tissue factor residues 157-167 are required for efficient proteolytic activation of factor X and factor VII. J Biol Chem. 1992 Nov 5;267(31):22206–22210. [PubMed] [Google Scholar]
- Ruf W., Rehemtulla A., Morrissey J. H., Edgington T. S. Phospholipid-independent and -dependent interactions required for tissue factor receptor and cofactor function. J Biol Chem. 1991 Feb 5;266(4):2158–2166. [PubMed] [Google Scholar]
- Schullek J. R., Ruf W., Edgington T. S. Key ligand interface residues in tissue factor contribute independently to factor VIIa binding. J Biol Chem. 1994 Jul 29;269(30):19399–19403. [PubMed] [Google Scholar]
- Silverberg S. A., Nemerson Y., Zur M. Kinetics of the activation of bovine coagulation factor X by components of the extrinsic pathway. Kinetic behavior of two-chain factor VII in the presence and absence of tissue factor. J Biol Chem. 1977 Dec 10;252(23):8481–8488. [PubMed] [Google Scholar]
- Stone M. J., Ruf W., Miles D. J., Edgington T. S., Wright P. E. Recombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from Escherichia coli inclusion bodies: glycosylation of mutants, activity and physical characterization. Biochem J. 1995 Sep 1;310(Pt 2):605–614. doi: 10.1042/bj3100605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsao B. P., Fair D. S., Curtiss L. K., Edgington T. S. Monocytes can be induced by lipopolysaccharide-triggered T lymphocytes to express functional factor VII/VIIa protease activity. J Exp Med. 1984 Apr 1;159(4):1042–1057. doi: 10.1084/jem.159.4.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto M., Nakagaki T., Kisiel W. Tissue factor-dependent autoactivation of human blood coagulation factor VII. J Biol Chem. 1992 Sep 25;267(27):19089–19094. [PubMed] [Google Scholar]
- Zhong D., Smith K. J., Birktoft J. J., Bajaj S. P. First epidermal growth factor-like domain of human blood coagulation factor IX is required for its activation by factor VIIa/tissue factor but not by factor XIa. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3574–3578. doi: 10.1073/pnas.91.9.3574. [DOI] [PMC free article] [PubMed] [Google Scholar]
