Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Apr 26;91(9):3574–3578. doi: 10.1073/pnas.91.9.3574

First epidermal growth factor-like domain of human blood coagulation factor IX is required for its activation by factor VIIa/tissue factor but not by factor XIa.

D Zhong 1, K J Smith 1, J J Birktoft 1, S P Bajaj 1
PMCID: PMC43622  PMID: 8170949

Abstract

Factor IX consists of a gamma-carboxyglutamic acid-rich domain followed by two epidermal growth factor (EGF)-like domains and the C-terminal protease domain. To delineate the function of EGF1 domain in factor IX, we constructed three mutants: an EGF1 domain-deleted mutant (IX delta EGF1), a point mutant (IXQ50P) with a Gln-50-->Pro change, and a replacement mutant (IXPCEGF1) in which the EGF1 domain of factor IX was replaced by that of protein C. These mutants and wild-type (WT) factor IX (IXWT) were expressed in 293 kidney cells by using pRc/CMV vector. The purified proteins had the same gamma-carboxyglutamic acid content as the normal plasma factor IX (IXNP) and were activated normally by factor XIa-Ca2+. In contrast, IX delta EGF1 could not be activated by factor VIIa-tissue factor-Ca2+, and the activation of IXPCEGF1 in this system was markedly slow; however, IXQ50P was activated at a normal rate. In additional studies, both IXWT and IX delta EGF1 were rapidly converted to their respective IX alpha forms by factor Xa-phospholipid-Ca2+. Since this reaction has an absolute requirement for phospholipid, it indicates that the mutants under study are not impaired in their interactions with phospholipid. Relative coagulant activities of factor XIa-activated proteins were IXNP, 100%; IXWT, 75-85%; IX delta EGF1, < or = 1%; IXPCEGF1, < or = 2%; and IXQ50P, 6-10%. We conclude that the EGF1 domain of factor IX is required for its activation by factor VIIa-tissue factor and that the Gln-50 residue is not critical for this activation. Further, the EGF1 domain of factor IX is not essential for phospholipid binding and for its activation by factor XIa. In addition, the low coagulant activities of the activated mutants indicate that the EGF1 domain is also important in factor X activation by factor IXa-factor VIIIa-Ca(2+)-phospholipid complex.

Full text

PDF
3574

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad S. S., Rawala-Sheikh R., Cheung W. F., Stafford D. W., Walsh P. N. The role of the first growth factor domain of human factor IXa in binding to platelets and in factor X activation. J Biol Chem. 1992 Apr 25;267(12):8571–8576. [PubMed] [Google Scholar]
  2. Amphlett G. W., Kisiel W., Castellino F. J. The interaction of Ca2+ with human Factor IX. Arch Biochem Biophys. 1981 May;208(2):576–585. doi: 10.1016/0003-9861(81)90546-4. [DOI] [PubMed] [Google Scholar]
  3. Astermark J., Hogg P. J., Björk I., Stenflo J. Effects of gamma-carboxyglutamic acid and epidermal growth factor-like modules of factor IX on factor X activation. Studies using proteolytic fragments of bovine factor IX. J Biol Chem. 1992 Feb 15;267(5):3249–3256. [PubMed] [Google Scholar]
  4. Bach R., Gentry R., Nemerson Y. Factor VII binding to tissue factor in reconstituted phospholipid vesicles: induction of cooperativity by phosphatidylserine. Biochemistry. 1986 Jul 15;25(14):4007–4020. doi: 10.1021/bi00362a005. [DOI] [PubMed] [Google Scholar]
  5. Bajaj S. P., Birktoft J. J. Human factor IX and factor IXa. Methods Enzymol. 1993;222:96–128. doi: 10.1016/0076-6879(93)22009-5. [DOI] [PubMed] [Google Scholar]
  6. Bajaj S. P. Cooperative Ca2+ binding to human factor IX. Effects of Ca2+ on the kinetic parameters of the activation of factor IX by factor XIa. J Biol Chem. 1982 Apr 25;257(8):4127–4132. [PubMed] [Google Scholar]
  7. Bajaj S. P., Rapaport S. I., Maki S. L. A monoclonal antibody to factor IX that inhibits the factor VIII:Ca potentiation of factor X activation. J Biol Chem. 1985 Sep 25;260(21):11574–11580. [PubMed] [Google Scholar]
  8. Bajaj S. P., Rapaport S. I., Prodanos C. A simplified procedure for purification of human prothrombin, factor IX and factor X. Prep Biochem. 1981;11(4):397–412. doi: 10.1080/00327488108065531. [DOI] [PubMed] [Google Scholar]
  9. Bajaj S. P., Rapaport S. I., Russell W. A. Redetermination of the rate-limiting step in the activation of factor IX by factor XIa and by factor VIIa/tissue factor. Explanation for different electrophoretic radioactivity profiles obtained on activation of 3H- and 125I-labeled factor IX. Biochemistry. 1983 Aug 16;22(17):4047–4053. doi: 10.1021/bi00286a009. [DOI] [PubMed] [Google Scholar]
  10. Bajaj S. P., Sabharwal A. K., Gorka J., Birktoft J. J. Antibody-probed conformational transitions in the protease domain of human factor IX upon calcium binding and zymogen activation: putative high-affinity Ca(2+)-binding site in the protease domain. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):152–156. doi: 10.1073/pnas.89.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Baron M., Norman D. G., Harvey T. S., Handford P. A., Mayhew M., Tse A. G., Brownlee G. G., Campbell I. D. The three-dimensional structure of the first EGF-like module of human factor IX: comparison with EGF and TGF-alpha. Protein Sci. 1992 Jan;1(1):81–90. doi: 10.1002/pro.5560010109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363–10370. doi: 10.1021/bi00107a001. [DOI] [PubMed] [Google Scholar]
  13. Di Scipio R. G., Hermodson M. A., Yates S. G., Davie E. W. A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S. Biochemistry. 1977 Feb 22;16(4):698–706. doi: 10.1021/bi00623a022. [DOI] [PubMed] [Google Scholar]
  14. Di Scipio R. G., Kurachi K., Davie E. W. Activation of human factor IX (Christmas factor). J Clin Invest. 1978 Jun;61(6):1528–1538. doi: 10.1172/JCI109073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Foster D. C., Yoshitake S., Davie E. W. The nucleotide sequence of the gene for human protein C. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4673–4677. doi: 10.1073/pnas.82.14.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Handford P. A., Baron M., Mayhew M., Willis A., Beesley T., Brownlee G. G., Campbell I. D. The first EGF-like domain from human factor IX contains a high-affinity calcium binding site. EMBO J. 1990 Feb;9(2):475–480. doi: 10.1002/j.1460-2075.1990.tb08133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Handford P. A., Mayhew M., Baron M., Winship P. R., Campbell I. D., Brownlee G. G. Key residues involved in calcium-binding motifs in EGF-like domains. Nature. 1991 May 9;351(6322):164–167. doi: 10.1038/351164a0. [DOI] [PubMed] [Google Scholar]
  18. Harris R. J., Ling V. T., Spellman M. W. O-linked fucose is present in the first epidermal growth factor domain of factor XII but not protein C. J Biol Chem. 1992 Mar 15;267(8):5102–5107. [PubMed] [Google Scholar]
  19. Harris R. J., van Halbeek H., Glushka J., Basa L. J., Ling V. T., Smith K. J., Spellman M. W. Identification and structural analysis of the tetrasaccharide NeuAc alpha(2-->6)Gal beta(1-->4)GlcNAc beta(1-->3)Fuc alpha 1-->O-linked to serine 61 of human factor IX. Biochemistry. 1993 Jul 6;32(26):6539–6547. doi: 10.1021/bi00077a007. [DOI] [PubMed] [Google Scholar]
  20. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  21. Huang L. H., Cheng H., Pardi A., Tam J. P., Sweeney W. V. Sequence-specific 1H NMR assignments, secondary structure, and location of the calcium binding site in the first epidermal growth factor like domain of blood coagulation factor IX. Biochemistry. 1991 Jul 30;30(30):7402–7409. doi: 10.1021/bi00244a006. [DOI] [PubMed] [Google Scholar]
  22. Hudig D., Bajaj S. P. Tissue factor-like activity of the human monocytic tumor cell line U937. Thromb Res. 1982 Aug 1;27(3):321–332. doi: 10.1016/0049-3848(82)90079-2. [DOI] [PubMed] [Google Scholar]
  23. Husten E. J., Esmon C. T., Johnson A. E. The active site of blood coagulation factor Xa. Its distance from the phospholipid surface and its conformational sensitivity to components of the prothrombinase complex. J Biol Chem. 1987 Sep 25;262(27):12953–12961. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lawson J. H., Mann K. G. Cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation. J Biol Chem. 1991 Jun 15;266(17):11317–11327. [PubMed] [Google Scholar]
  26. Leytus S. P., Foster D. C., Kurachi K., Davie E. W. Gene for human factor X: a blood coagulation factor whose gene organization is essentially identical with that of factor IX and protein C. Biochemistry. 1986 Sep 9;25(18):5098–5102. doi: 10.1021/bi00366a018. [DOI] [PubMed] [Google Scholar]
  27. Lin S. W., Smith K. J., Welsch D., Stafford D. W. Expression and characterization of human factor IX and factor IX-factor X chimeras in mouse C127 cells. J Biol Chem. 1990 Jan 5;265(1):144–150. [PubMed] [Google Scholar]
  28. Lozier J. N., Monroe D. M., Stanfield-Oakley S., Lin S. W., Smith K. J., Roberts H. R., High K. A. Factor IX New London: substitution of proline for glutamine at position 50 causes severe hemophilia B. Blood. 1990 Mar 1;75(5):1097–1104. [PubMed] [Google Scholar]
  29. Masys D. R., Bajaj S. P., Rapaport S. I. Activation of human factor VII by activated factors IX and X. Blood. 1982 Nov;60(5):1143–1150. [PubMed] [Google Scholar]
  30. McCord D. M., Monroe D. M., Smith K. J., Roberts H. R. Characterization of the functional defect in factor IX Alabama. Evidence for a conformational change due to high affinity calcium binding in the first epidermal growth factor domain. J Biol Chem. 1990 Jun 25;265(18):10250–10254. [PubMed] [Google Scholar]
  31. Naito K., Fujikawa K. Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. J Biol Chem. 1991 Apr 25;266(12):7353–7358. [PubMed] [Google Scholar]
  32. Nelson R. M., Long G. L. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal Biochem. 1989 Jul;180(1):147–151. doi: 10.1016/0003-2697(89)90103-6. [DOI] [PubMed] [Google Scholar]
  33. Nishimura H., Kawabata S., Kisiel W., Hase S., Ikenaka T., Takao T., Shimonishi Y., Iwanaga S. Identification of a disaccharide (Xyl-Glc) and a trisaccharide (Xyl2-Glc) O-glycosidically linked to a serine residue in the first epidermal growth factor-like domain of human factors VII and IX and protein Z and bovine protein Z. J Biol Chem. 1989 Dec 5;264(34):20320–20325. [PubMed] [Google Scholar]
  34. Nishimura H., Takao T., Hase S., Shimonishi Y., Iwanaga S. Human factor IX has a tetrasaccharide O-glycosidically linked to serine 61 through the fucose residue. J Biol Chem. 1992 Sep 5;267(25):17520–17525. [PubMed] [Google Scholar]
  35. Osterud B., Bouma B. N., Griffin J. H. Human blood coagulation factor IX. Purification, properties, and mechanism of activation by activated factor XI. J Biol Chem. 1978 Sep 10;253(17):5946–5951. [PubMed] [Google Scholar]
  36. Przysiecki C. T., Staggers J. E., Ramjit H. G., Musson D. G., Stern A. M., Bennett C. D., Friedman P. A. Occurrence of beta-hydroxylated asparagine residues in non-vitamin K-dependent proteins containing epidermal growth factor-like domains. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7856–7860. doi: 10.1073/pnas.84.22.7856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rees D. J., Jones I. M., Handford P. A., Walter S. J., Esnouf M. P., Smith K. J., Brownlee G. G. The role of beta-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX. EMBO J. 1988 Jul;7(7):2053–2061. doi: 10.1002/j.1460-2075.1988.tb03045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schwalbe R. A., Ryan J., Stern D. M., Kisiel W., Dahlbäck B., Nelsestuen G. L. Protein structural requirements and properties of membrane binding by gamma-carboxyglutamic acid-containing plasma proteins and peptides. J Biol Chem. 1989 Dec 5;264(34):20288–20296. [PubMed] [Google Scholar]
  40. Selander M., Persson E., Stenflo J., Drakenberg T. 1H NMR assignment and secondary structure of the Ca2(+)-free form of the amino-terminal epidermal growth factor like domain in coagulation factor X. Biochemistry. 1990 Sep 4;29(35):8111–8118. doi: 10.1021/bi00487a018. [DOI] [PubMed] [Google Scholar]
  41. Smith K. J. Immunoaffinity purification of factor IX from commercial concentrates and infusion studies in animals. Blood. 1988 Oct;72(4):1269–1277. [PubMed] [Google Scholar]
  42. Spitzer S. G., Kuppuswamy M. N., Saini R., Kasper C. K., Birktoft J. J., Bajaj S. P. Factor IXHollywood: substitution of Pro55 by Ala in the first epidermal growth factor-like domain. Blood. 1990 Oct 15;76(8):1530–1537. [PubMed] [Google Scholar]
  43. Stenflo J. Structure-function relationships of epidermal growth factor modules in vitamin K-dependent clotting factors. Blood. 1991 Oct 1;78(7):1637–1651. [PubMed] [Google Scholar]
  44. Toomey J. R., Smith K. J., Roberts H. R., Stafford D. W. The endothelial cell binding determinant of human factor IX resides in the gamma-carboxyglutamic acid domain. Biochemistry. 1992 Feb 18;31(6):1806–1808. doi: 10.1021/bi00121a031. [DOI] [PubMed] [Google Scholar]
  45. Vysotchin A., Medved L. V., Ingham K. C. Domain structure and domain-domain interactions in human coagulation factor IX. J Biol Chem. 1993 Apr 25;268(12):8436–8446. [PubMed] [Google Scholar]
  46. Warn-Cramer B. J., Bajaj S. P. Stoichiometry of binding of high molecular weight kininogen to factor XI/XIa. Biochem Biophys Res Commun. 1985 Dec 17;133(2):417–422. doi: 10.1016/0006-291x(85)90922-2. [DOI] [PubMed] [Google Scholar]
  47. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  48. Yoshitake S., Schach B. G., Foster D. C., Davie E. W., Kurachi K. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry. 1985 Jul 2;24(14):3736–3750. doi: 10.1021/bi00335a049. [DOI] [PubMed] [Google Scholar]
  49. Zhong D., Bajaj S. P. A PCR-based method for site-specific domain replacement that does not require restriction recognition sequences. Biotechniques. 1993 Nov;15(5):874–878. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES