Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 15;322(Pt 3):719–727. doi: 10.1042/bj3220719

Characterization of a saporin isoform with lower ribosome-inhibiting activity.

M S Fabbrini 1, E Rappocciolo 1, D Carpani 1, M Solinas 1, B Valsasina 1, U Breme 1, U Cavallaro 1, A Nykjaer 1, E Rovida 1, G Legname 1, M R Soria 1
PMCID: PMC1218247  PMID: 9148741

Abstract

We have expressed in Escherichia coli five isoforms of saporin, a single-chain ribosome-inactivating protein (RIP). Translation inhibition activities of the purified recombinant polypeptides in vitro were compared with those of recombinant dianthin 30, a less potent and closely related RIP, and of ricin A chain. Dianthin 30, and a saporin isoform encoded by a cDNA from leaf tissue (SAP-C), both had about one order of magnitude lower activity in translation inhibition assays than all other isoforms of saporin tested. We recently demonstrated that saporin extracted from seeds of Saponaria officinalis binds to alpha2-macroglobulin receptor (alpha2MR; also termed low density lipoprotein-receptor-related-protein), indicating a general mechanism of interaction of plant RIPs with the alpha2MR system [Cavallaro, Nykjaer, Nielsen and Soria (1995) Eur. J. Biochem. 232, 165-171]. Here we report that SAP-C bound to alpha2MR equally well as native saporin. However, the same isoform had about ten times lower cytotoxicity than the other saporin isoforms towards different cell lines. This indicates that the lower cell-killing ability of the SAP-C isoform is presumably due to its altered interaction with the protein synthesis machinery of target cells. Since saporin binding to the alpha2MR is competed by heparin, we also tested in cell-killing experiments Chinese hamster ovary cell lines defective for expression of either heparan sulphates or proteoglycans. No differences were observed in cytotoxicity using native saporin or the recombinant isoforms. Therefore saporin binding to the cell surface should not be mediated by interaction with proteoglycans, as is the case for other alpha2MR ligands.

Full Text

The Full Text of this article is available as a PDF (498.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandziulis R. J., Swanson M. S., Dreyfuss G. RNA-binding proteins as developmental regulators. Genes Dev. 1989 Apr;3(4):431–437. doi: 10.1101/gad.3.4.431. [DOI] [PubMed] [Google Scholar]
  2. Barra D., Maras B., Schininà M. E., Angelaccio S., Bossa F. Assessment of sequence features in internal regions of proteins. Biotechnol Appl Biochem. 1991 Feb;13(1):48–53. [PubMed] [Google Scholar]
  3. Barthelemy I., Martineau D., Ong M., Matsunami R., Ling N., Benatti L., Cavallaro U., Soria M., Lappi D. A. The expression of saporin, a ribosome-inactivating protein from the plant Saponaria officinalis, in Escherichia coli. J Biol Chem. 1993 Mar 25;268(9):6541–6548. [PubMed] [Google Scholar]
  4. Benatti L., Nitti G., Solinas M., Valsasina B., Vitale A., Ceriotti A., Soria M. R. A Saporin-6 cDNA containing a precursor sequence coding for a carboxyl-terminal extension. FEBS Lett. 1991 Oct 21;291(2):285–288. doi: 10.1016/0014-5793(91)81303-p. [DOI] [PubMed] [Google Scholar]
  5. Benatti L., Saccardo M. B., Dani M., Nitti G., Sassano M., Lorenzetti R., Lappi D. A., Soria M. Nucleotide sequence of cDNA coding for saporin-6, a type-1 ribosome-inactivating protein from Saponaria officinalis. Eur J Biochem. 1989 Aug 1;183(2):465–470. doi: 10.1111/j.1432-1033.1989.tb14951.x. [DOI] [PubMed] [Google Scholar]
  6. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  7. Bravi G., Legname G., Chan A. W. Substrate recognition by ribosome-inactivating protein studied by molecular modeling and molecular electrostatic potentials. J Mol Graph. 1995 Apr;13(2):83-8, 109. doi: 10.1016/0263-7855(94)00014-j. [DOI] [PubMed] [Google Scholar]
  8. Casscells W., Lappi D. A., Olwin B. B., Wai C., Siegman M., Speir E. H., Sasse J., Baird A. Elimination of smooth muscle cells in experimental restenosis: targeting of fibroblast growth factor receptors. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7159–7163. doi: 10.1073/pnas.89.15.7159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cavallaro U., Nykjaer A., Nielsen M., Soria M. R. Alpha 2-macroglobulin receptor mediates binding and cytotoxicity of plant ribosome-inactivating proteins. Eur J Biochem. 1995 Aug 15;232(1):165–171. doi: 10.1111/j.1432-1033.1995.tb20795.x. [DOI] [PubMed] [Google Scholar]
  10. Cavallaro U., del Vecchio A., Lappi D. A., Soria M. R. A conjugate between human urokinase and saporin, a type-1 ribosome-inactivating protein, is selectively cytotoxic to urokinase receptor-expressing cells. J Biol Chem. 1993 Nov 5;268(31):23186–23190. [PubMed] [Google Scholar]
  11. Chaddock J. A., Lord J. M., Hartley M. R., Roberts L. M. Pokeweed antiviral protein (PAP) mutations which permit E.coli growth do not eliminate catalytic activity towards prokaryotic ribosomes. Nucleic Acids Res. 1994 May 11;22(9):1536–1540. doi: 10.1093/nar/22.9.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chaddock J. A., Monzingo A. F., Robertus J. D., Lord J. M., Roberts L. M. Major structural differences between pokeweed antiviral protein and ricin A-chain do not account for their differing ribosome specificity. Eur J Biochem. 1996 Jan 15;235(1-2):159–166. doi: 10.1111/j.1432-1033.1996.00159.x. [DOI] [PubMed] [Google Scholar]
  13. Edgell C. J., McDonald C. C., Graham J. B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3734–3737. doi: 10.1073/pnas.80.12.3734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Esko J. D., Rostand K. S., Weinke J. L. Tumor formation dependent on proteoglycan biosynthesis. Science. 1988 Aug 26;241(4869):1092–1096. doi: 10.1126/science.3137658. [DOI] [PubMed] [Google Scholar]
  15. Esko J. D., Stewart T. E., Taylor W. H. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A. 1985 May;82(10):3197–3201. doi: 10.1073/pnas.82.10.3197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fabbrini M. S., Valsasina B., Nitti G., Benatti L., Vitale A. The signal peptide of human preproendothelin-1. FEBS Lett. 1991 Jul 29;286(1-2):91–94. doi: 10.1016/0014-5793(91)80948-3. [DOI] [PubMed] [Google Scholar]
  17. Falini B., Bolognesi A., Flenghi L., Tazzari P. L., Broe M. K., Stein H., Dürkop H., Aversa F., Corneli P., Pizzolo G. Response of refractory Hodgkin's disease to monoclonal anti-CD30 immunotoxin. Lancet. 1992 May 16;339(8803):1195–1196. doi: 10.1016/0140-6736(92)91135-u. [DOI] [PubMed] [Google Scholar]
  18. Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
  19. Ferreras J. M., Barbieri L., Girbés T., Battelli M. G., Rojo M. A., Arias F. J., Rocher M. A., Soriano F., Mendéz E., Stirpe F. Distribution and properties of major ribosome-inactivating proteins (28 S rRNA N-glycosidases) of the plant Saponaria officinalis L. (Caryophyllaceae). Biochim Biophys Acta. 1993 Oct 19;1216(1):31–42. doi: 10.1016/0167-4781(93)90034-b. [DOI] [PubMed] [Google Scholar]
  20. Fordham-Skelton A. P., Taylor P. N., Hartley M. R., Croy R. R. Characterisation of saporin genes: in vitro expression and ribosome inactivation. Mol Gen Genet. 1991 Oct;229(3):460–466. doi: 10.1007/BF00267470. [DOI] [PubMed] [Google Scholar]
  21. Habuka N., Murakami Y., Noma M., Kudo T., Horikoshi K. Amino acid sequence of Mirabilis antiviral protein, total synthesis of its gene and expression in Escherichia coli. J Biol Chem. 1989 Apr 25;264(12):6629–6637. [PubMed] [Google Scholar]
  22. Hartley M. R., Legname G., Osborn R., Chen Z., Lord J. M. Single-chain ribosome inactivating proteins from plants depurinate Escherichia coli 23S ribosomal RNA. FEBS Lett. 1991 Sep 23;290(1-2):65–68. doi: 10.1016/0014-5793(91)81227-y. [DOI] [PubMed] [Google Scholar]
  23. Houston L. L., Ramakrishnan S., Hermodson M. A. Seasonal variations in different forms of pokeweed antiviral protein, a potent inactivator of ribosomes. J Biol Chem. 1983 Aug 25;258(16):9601–9604. [PubMed] [Google Scholar]
  24. Hung C. H., Lee M. C., Chen J. K., Lin J. Y. Cloning and expression of three abrin A-chains and their mutants derived by site-specific mutagenesis in Escherichia coli. Eur J Biochem. 1994 Jan 15;219(1-2):83–87. doi: 10.1111/j.1432-1033.1994.tb19917.x. [DOI] [PubMed] [Google Scholar]
  25. Lappi D. A., Esch F. S., Barbieri L., Stirpe F., Soria M. Characterization of a Saponaria officinalis seed ribosome-inactivating protein: immunoreactivity and sequence homologies. Biochem Biophys Res Commun. 1985 Jun 28;129(3):934–942. doi: 10.1016/0006-291x(85)91981-3. [DOI] [PubMed] [Google Scholar]
  26. Lappi D. A., Ying W., Barthelemy I., Martineau D., Prieto I., Benatti L., Soria M., Baird A. Expression and activities of a recombinant basic fibroblast growth factor-saporin fusion protein. J Biol Chem. 1994 Apr 29;269(17):12552–12558. [PubMed] [Google Scholar]
  27. Legname G., Fossati G., Monzini N., Gromo G., Marcucci F., Mascagni P., Modena D. Heterologous expression, purification, activity and conformational studies of different forms of dianthin 30. Biomed Pept Proteins Nucleic Acids. 1995;1(2):61–68. [PubMed] [Google Scholar]
  28. Legname G., Gromo G., Lord J. M., Monzini N., Modena D. Expression and activity of pre-dianthin 30 and dianthin 30. Biochem Biophys Res Commun. 1993 May 14;192(3):1230–1237. doi: 10.1006/bbrc.1993.1548. [DOI] [PubMed] [Google Scholar]
  29. Lodge J. K., Kaniewski W. K., Tumer N. E. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7089–7093. doi: 10.1073/pnas.90.15.7089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lord J. M., Roberts L. M., Robertus J. D. Ricin: structure, mode of action, and some current applications. FASEB J. 1994 Feb;8(2):201–208. [PubMed] [Google Scholar]
  31. Machamer C. E., Rose J. K. Influence of new glycosylation sites on expression of the vesicular stomatitis virus G protein at the plasma membrane. J Biol Chem. 1988 Apr 25;263(12):5948–5954. [PubMed] [Google Scholar]
  32. McGrath M. S., Hwang K. M., Caldwell S. E., Gaston I., Luk K. C., Wu P., Ng V. L., Crowe S., Daniels J., Marsh J. GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2844–2848. doi: 10.1073/pnas.86.8.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mikhailenko I., Kounnas M. Z., Strickland D. K. Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates the cellular internalization and degradation of thrombospondin. A process facilitated by cell-surface proteoglycans. J Biol Chem. 1995 Apr 21;270(16):9543–9549. doi: 10.1074/jbc.270.16.9543. [DOI] [PubMed] [Google Scholar]
  34. Moestrup S. K. The alpha 2-macroglobulin receptor and epithelial glycoprotein-330: two giant receptors mediating endocytosis of multiple ligands. Biochim Biophys Acta. 1994 Jun 29;1197(2):197–213. doi: 10.1016/0304-4157(94)90005-1. [DOI] [PubMed] [Google Scholar]
  35. Montfort W., Villafranca J. E., Monzingo A. F., Ernst S. R., Katzin B., Rutenber E., Xuong N. H., Hamlin R., Robertus J. D. The three-dimensional structure of ricin at 2.8 A. J Biol Chem. 1987 Apr 15;262(11):5398–5403. [PubMed] [Google Scholar]
  36. Monzingo A. F., Collins E. J., Ernst S. R., Irvin J. D., Robertus J. D. The 2.5 A structure of pokeweed antiviral protein. J Mol Biol. 1993 Oct 20;233(4):705–715. doi: 10.1006/jmbi.1993.1547. [DOI] [PubMed] [Google Scholar]
  37. Munishkin A., Wool I. G. Systematic deletion analysis of ricin A-chain function. Single amino acid deletions. J Biol Chem. 1995 Dec 22;270(51):30581–30587. doi: 10.1074/jbc.270.51.30581. [DOI] [PubMed] [Google Scholar]
  38. Nykjaer A., Nielsen M., Lookene A., Meyer N., Røigaard H., Etzerodt M., Beisiegel U., Olivecrona G., Gliemann J. A carboxyl-terminal fragment of lipoprotein lipase binds to the low density lipoprotein receptor-related protein and inhibits lipase-mediated uptake of lipoprotein in cells. J Biol Chem. 1994 Dec 16;269(50):31747–31755. [PubMed] [Google Scholar]
  39. Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
  40. Prestle J., Schönfelder M., Adam G., Mundry K. W. Type 1 ribosome-inactivating proteins depurinate plant 25S rRNA without species specificity. Nucleic Acids Res. 1992 Jun 25;20(12):3179–3182. doi: 10.1093/nar/20.12.3179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Query C. C., Bentley R. C., Keene J. D. A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell. 1989 Apr 7;57(1):89–101. doi: 10.1016/0092-8674(89)90175-x. [DOI] [PubMed] [Google Scholar]
  42. Ready M. P., Katzin B. J., Robertus J. D. Ribosome-inhibiting proteins, retroviral reverse transcriptases, and RNase H share common structural elements. Proteins. 1988;3(1):53–59. doi: 10.1002/prot.340030105. [DOI] [PubMed] [Google Scholar]
  43. Reisbig R. R., Bruland O. Dianthin 30 and 32 from Dianthus caryophyllus: two inhibitors of plant protein synthesis and their tissue distribution. Arch Biochem Biophys. 1983 Jul 15;224(2):700–706. doi: 10.1016/0003-9861(83)90258-8. [DOI] [PubMed] [Google Scholar]
  44. Stirpe F., Barbieri L., Battelli M. G., Soria M., Lappi D. A. Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology (N Y) 1992 Apr;10(4):405–412. doi: 10.1038/nbt0492-405. [DOI] [PubMed] [Google Scholar]
  45. Sutcliffe M. J., Haneef I., Carney D., Blundell T. L. Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1987 Oct-Nov;1(5):377–384. doi: 10.1093/protein/1.5.377. [DOI] [PubMed] [Google Scholar]
  46. Taylor B. E., Irvin J. D. Depurination of plant ribosomes by pokeweed antiviral protein. FEBS Lett. 1990 Oct 29;273(1-2):144–146. doi: 10.1016/0014-5793(90)81070-5. [DOI] [PubMed] [Google Scholar]
  47. Taylor S., Massiah A., Lomonossoff G., Roberts L. M., Lord J. M., Hartley M. Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J. 1994 Jun;5(6):827–835. doi: 10.1046/j.1365-313x.1994.5060827.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES