Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 1;323(Pt 1):1–12. doi: 10.1042/bj3230001

Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling.

N J Faergeman 1, J Knudsen 1
PMCID: PMC1218279  PMID: 9173866

Abstract

The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase.

Full Text

The Full Text of this article is available as a PDF (499.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alho H., Costa E., Ferrero P., Fujimoto M., Cosenza-Murphy D., Guidotti A. Diazepam-binding inhibitor: a neuropeptide located in selected neuronal populations of rat brain. Science. 1985 Jul 12;229(4709):179–182. doi: 10.1126/science.3892688. [DOI] [PubMed] [Google Scholar]
  2. Aquila H., Link T. A., Klingenberg M. Solute carriers involved in energy transfer of mitochondria form a homologous protein family. FEBS Lett. 1987 Feb 9;212(1):1–9. doi: 10.1016/0014-5793(87)81546-6. [DOI] [PubMed] [Google Scholar]
  3. Arduini A., Mancinelli G., Ramsay R. R. Palmitoyl-L-carnitine, a metabolic intermediate of the fatty acid incorporation pathway in erythrocyte membrane phospholipids. Biochem Biophys Res Commun. 1990 Nov 30;173(1):212–217. doi: 10.1016/s0006-291x(05)81043-5. [DOI] [PubMed] [Google Scholar]
  4. BORTZ W. M., LYNEN F. THE INHIBITION OF ACETYL COA CARBOXYLASE BY LONG CHAIN ACYL COA DERIVATIVES. Biochem Z. 1963 Aug 14;337:505–509. [PubMed] [Google Scholar]
  5. Balch W. E., Dunphy W. G., Braell W. A., Rothman J. E. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984 Dec;39(2 Pt 1):405–416. doi: 10.1016/0092-8674(84)90019-9. [DOI] [PubMed] [Google Scholar]
  6. Barbour R. L., Chan S. H. Regulation of palmitoyl-CoA inhibition of mitochondrial adenine nucleotide transport by cytosolic fatty acid binding protein. Biochem Biophys Res Commun. 1979 Aug 28;89(4):1168–1177. doi: 10.1016/0006-291x(79)92131-4. [DOI] [PubMed] [Google Scholar]
  7. Bass N. M. Function and regulation of hepatic and intestinal fatty acid binding proteins. Chem Phys Lipids. 1985 Aug 30;38(1-2):95–114. doi: 10.1016/0009-3084(85)90060-x. [DOI] [PubMed] [Google Scholar]
  8. Bass N. M. The cellular fatty acid binding proteins: aspects of structure, regulation, and function. Int Rev Cytol. 1988;111:143–184. doi: 10.1016/s0074-7696(08)61733-7. [DOI] [PubMed] [Google Scholar]
  9. Behal R. H., Buxton D. B., Robertson J. G., Olson M. S. Regulation of the pyruvate dehydrogenase multienzyme complex. Annu Rev Nutr. 1993;13:497–520. doi: 10.1146/annurev.nu.13.070193.002433. [DOI] [PubMed] [Google Scholar]
  10. Bell R. M., Ballas L. M., Coleman R. A. Lipid topogenesis. J Lipid Res. 1981 Mar;22(3):391–403. [PubMed] [Google Scholar]
  11. Berge R. K., Aarsland A., Bakke O. M., Farstad M. Hepatic enzymes, CoASH and long-chain acyl-CoA in subcellular fractions as affected by drugs inducing peroxisomes and smooth endoplasmic reticulum. Int J Biochem. 1983;15(2):191–204. doi: 10.1016/0020-711x(83)90065-4. [DOI] [PubMed] [Google Scholar]
  12. Berge R. K., Aarsland A. Correlation between the cellular level of long-chain acyl-CoA, peroxisomal beta-oxidation, and palmitoyl-CoA hydrolase activity in rat liver. Are the two enzyme systems regulated by a substrate-induced mechanism? Biochim Biophys Acta. 1985 Nov 14;837(2):141–151. doi: 10.1016/0005-2760(85)90237-1. [DOI] [PubMed] [Google Scholar]
  13. Berge R. K., Bakke O. M. Changes in lipid metabolizing enzymes of hepatic subcellular fractions from rats treated with tiadenol and clofibrate. Biochem Pharmacol. 1981 Aug 15;30(16):2251–2256. doi: 10.1016/0006-2952(81)90095-2. [DOI] [PubMed] [Google Scholar]
  14. Berge R. K., Farstad M. Purification and characterization of long-chain acyl-CoA hydrolase from rat liver mitochondria. Eur J Biochem. 1979 May 15;96(2):393–401. doi: 10.1111/j.1432-1033.1979.tb13051.x. [DOI] [PubMed] [Google Scholar]
  15. Berge R. K., Hosøy L. H., Aarsland A., Bakke O. M., Farstad M. Enzymatic changes in rat liver associated with low and high doses of a peroxisome proliferator. Toxicol Appl Pharmacol. 1984 Mar 30;73(1):35–41. doi: 10.1016/0041-008x(84)90050-4. [DOI] [PubMed] [Google Scholar]
  16. Berge R. K. Purification and characterization of a long-chain acyl-CoA hydrolase from rat liver microsomes. Biochim Biophys Acta. 1979 Aug 30;574(2):321–333. doi: 10.1016/0005-2760(79)90013-4. [DOI] [PubMed] [Google Scholar]
  17. Boerman M. H., Napoli J. L. Cellular retinol-binding protein-supported retinoic acid synthesis. Relative roles of microsomes and cytosol. J Biol Chem. 1996 Mar 8;271(10):5610–5616. doi: 10.1074/jbc.271.10.5610. [DOI] [PubMed] [Google Scholar]
  18. Bordewick U., Heese M., Börchers T., Robenek H., Spener F. Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis. Biol Chem Hoppe Seyler. 1989 Mar;370(3):229–238. doi: 10.1515/bchm3.1989.370.1.229. [DOI] [PubMed] [Google Scholar]
  19. Bossie M. A., Martin C. E. Nutritional regulation of yeast delta-9 fatty acid desaturase activity. J Bacteriol. 1989 Dec;171(12):6409–6413. doi: 10.1128/jb.171.12.6409-6413.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bovolin P., Schlichting J., Miyata M., Ferrarese C., Guidotti A., Alho H. Distribution and characterization of diazepam binding inhibitor (DBI) in peripheral tissues of rat. Regul Pept. 1990 Jul 30;29(2-3):267–281. doi: 10.1016/0167-0115(90)90089-f. [DOI] [PubMed] [Google Scholar]
  21. Boylan J. G., Hamilton J. A. Interactions of acyl-coenzyme A with phosphatidylcholine bilayers and serum albumin. Biochemistry. 1992 Jan 21;31(2):557–567. doi: 10.1021/bi00117a037. [DOI] [PubMed] [Google Scholar]
  22. Brady P. S., Ramsay R. R., Brady L. J. Regulation of the long-chain carnitine acyltransferases. FASEB J. 1993 Aug;7(11):1039–1044. doi: 10.1096/fasebj.7.11.8370473. [DOI] [PubMed] [Google Scholar]
  23. Brindley D. N. Intracellular translocation of phosphatidate phosphohydrolase and its possible role in the control of glycerolipid synthesis. Prog Lipid Res. 1984;23(3):115–133. doi: 10.1016/0163-7827(84)90001-8. [DOI] [PubMed] [Google Scholar]
  24. Bronfman M., Morales M. N., Orellana A. Diacylglycerol activation of protein kinase C is modulated by long-chain acyl-CoA. Biochem Biophys Res Commun. 1988 May 16;152(3):987–992. doi: 10.1016/s0006-291x(88)80381-4. [DOI] [PubMed] [Google Scholar]
  25. Broustas C. G., Hajra A. K. Purification, properties, and specificity of rat brain cytosolic fatty acyl coenzyme A hydrolase. J Neurochem. 1995 May;64(5):2345–2353. doi: 10.1046/j.1471-4159.1995.64052345.x. [DOI] [PubMed] [Google Scholar]
  26. Brun T., Roche E., Assimacopoulos-Jeannet F., Corkey B. E., Kim K. H., Prentki M. Evidence for an anaplerotic/malonyl-CoA pathway in pancreatic beta-cell nutrient signaling. Diabetes. 1996 Feb;45(2):190–198. doi: 10.2337/diab.45.2.190. [DOI] [PubMed] [Google Scholar]
  27. Burnett D. A., Lysenko N., Manning J. A., Ockner R. K. Utilization of long chain fatty acids by rat liver: studies of the role of fatty acid binding protein. Gastroenterology. 1979 Aug;77(2):241–249. [PubMed] [Google Scholar]
  28. Burrier R. E., Manson C. R., Brecher P. Binding of acyl-CoA to liver fatty acid binding protein: effect on acyl-CoA synthesis. Biochim Biophys Acta. 1987 Jun 23;919(3):221–230. doi: 10.1016/0005-2760(87)90261-x. [DOI] [PubMed] [Google Scholar]
  29. Bánhegyi G., Csala M., Mandl J., Burchell A., Burchell B., Marcolongo P., Fulceri R., Benedetti A. Fatty acyl-CoA esters and the permeability of rat liver microsomal vesicles. Biochem J. 1996 Nov 15;320(Pt 1):343–344. doi: 10.1042/bj3200343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Cannon B., Sundin U., Romert L. Palmitoyl coenzyme A: a possible physiological regulator of nucleotide binding to brown adipose tissue mitochondria. FEBS Lett. 1977 Feb 15;74(1):43–46. doi: 10.1016/0014-5793(77)80748-5. [DOI] [PubMed] [Google Scholar]
  31. Carling D., Zammit V. A., Hardie D. G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 1987 Nov 2;223(2):217–222. doi: 10.1016/0014-5793(87)80292-2. [DOI] [PubMed] [Google Scholar]
  32. Chen S., Ogawa A., Ohneda M., Unger R. H., Foster D. W., McGarry J. D. More direct evidence for a malonyl-CoA-carnitine palmitoyltransferase I interaction as a key event in pancreatic beta-cell signaling. Diabetes. 1994 Jul;43(7):878–883. doi: 10.2337/diab.43.7.878. [DOI] [PubMed] [Google Scholar]
  33. Chen Z. W., Agerberth B., Gell K., Andersson M., Mutt V., Ostenson C. G., Efendić S., Barros-Söderling J., Persson B., Jörnvall H. Isolation and characterization of porcine diazepam-binding inhibitor, a polypeptide not only of cerebral occurrence but also common in intestinal tissues and with effects on regulation of insulin release. Eur J Biochem. 1988 Jun 1;174(2):239–245. doi: 10.1111/j.1432-1033.1988.tb14088.x. [DOI] [PubMed] [Google Scholar]
  34. Chini E. N., Dousa T. P. Palmitoyl-CoA potentiates the Ca2+ release elicited by cyclic ADP-ribose. Am J Physiol. 1996 Feb;270(2 Pt 1):C530–C537. doi: 10.1152/ajpcell.1996.270.2.C530. [DOI] [PubMed] [Google Scholar]
  35. Choi J. Y., Stukey J., Hwang S. Y., Martin C. E. Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem. 1996 Feb 16;271(7):3581–3589. doi: 10.1074/jbc.271.7.3581. [DOI] [PubMed] [Google Scholar]
  36. Clarke S. D., Jump D. B. Dietary polyunsaturated fatty acid regulation of gene transcription. Annu Rev Nutr. 1994;14:83–98. doi: 10.1146/annurev.nu.14.070194.000503. [DOI] [PubMed] [Google Scholar]
  37. Clarke S. D., Jump D. B. Regulation of gene transcription by polyunsaturated fatty acids. Prog Lipid Res. 1993;32(2):139–149. doi: 10.1016/0163-7827(93)90013-m. [DOI] [PubMed] [Google Scholar]
  38. Comerford J. G., Dawson A. P. Effects of CoA and acyl-CoAs on GTP-dependent Ca2+ release and vesicle fusion in rat liver microsomal vesicles. Biochem J. 1993 Jan 15;289(Pt 2):561–567. doi: 10.1042/bj2890561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Constantinides P. P., Steim J. M. Physical properties of fatty acyl-CoA. Critical micelle concentrations and micellar size and shape. J Biol Chem. 1985 Jun 25;260(12):7573–7580. [PubMed] [Google Scholar]
  40. Corkey B. E. Analysis of acyl-coenzyme A esters in biological samples. Methods Enzymol. 1988;166:55–70. doi: 10.1016/s0076-6879(88)66011-3. [DOI] [PubMed] [Google Scholar]
  41. Deeney J. T., Tornheim K., Korchak H. M., Prentki M., Corkey B. E. Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic beta-cells. J Biol Chem. 1992 Oct 5;267(28):19840–19845. [PubMed] [Google Scholar]
  42. Denyer G. S., Kerbey A. L., Randle P. J. Kinase activator protein mediates longer-term effects of starvation on activity of pyruvate dehydrogenase kinase in rat liver mitochondria. Biochem J. 1986 Oct 15;239(2):347–354. doi: 10.1042/bj2390347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Di Lisa F., Menabò R., Miotto G., Bobyleva-Guarriero V., Siliprandi N. Ca2+-mediated action of long-chain acyl-CoA on liver mitochondria energy-linked processes. Biochim Biophys Acta. 1989 Feb 28;973(2):185–188. doi: 10.1016/s0005-2728(89)80420-7. [DOI] [PubMed] [Google Scholar]
  44. DiRusso C. C., Heimert T. L., Metzger A. K. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J Biol Chem. 1992 Apr 25;267(12):8685–8691. [PubMed] [Google Scholar]
  45. DiRusso C. C., Metzger A. K., Heimert T. L. Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis in Escherichia coli by FadR. Mol Microbiol. 1993 Jan;7(2):311–322. doi: 10.1111/j.1365-2958.1993.tb01122.x. [DOI] [PubMed] [Google Scholar]
  46. Dumonteil E., Barré H., Meissner G. Effects of palmitoyl carnitine and related metabolites on the avian Ca(2+)-ATPase and Ca2+ release channel. J Physiol. 1994 Aug 15;479(Pt 1):29–39. doi: 10.1113/jphysiol.1994.sp020275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Dumonteil E., Barré H., Meissner G. Sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine receptor in cold-acclimated ducklings and thermogenesis. Am J Physiol. 1993 Aug;265(2 Pt 1):C507–C513. doi: 10.1152/ajpcell.1993.265.2.C507. [DOI] [PubMed] [Google Scholar]
  48. Echabe I., Requero M. A., Goñi F. M., Arrondo J. L., Alonso A. An infrared investigation of palmitoyl-coenzyme A and palmitoylcarnitine interaction with perdeuterated-chain phospholipid bilayers. Eur J Biochem. 1995 Jul 1;231(1):199–203. doi: 10.1111/j.1432-1033.1995.0199f.x. [DOI] [PubMed] [Google Scholar]
  49. Faergeman N. J., Sigurskjold B. W., Kragelund B. B., Andersen K. V., Knudsen J. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry. Biochemistry. 1996 Nov 12;35(45):14118–14126. doi: 10.1021/bi960545z. [DOI] [PubMed] [Google Scholar]
  50. French T. J., Goode A. W., Holness M. J., MacLennan P. A., Sugden M. C. The relationship between changes in lipid fuel availability and tissue fructose 2,6-bisphosphate concentrations and pyruvate dehydrogenase complex activities in the fed state. Biochem J. 1988 Dec 15;256(3):935–939. doi: 10.1042/bj2560935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Fulceri R., Gamberucci A., Bellomo G., Giunti R., Benedetti A. CoA and fatty acyl-CoA derivatives mobilize calcium from a liver reticular pool. Biochem J. 1993 Nov 1;295(Pt 3):663–669. doi: 10.1042/bj2950663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Fulceri R., Gamberucci A., Scott H. M., Giunti R., Burchell A., Benedetti A. Fatty acyl-CoA esters inhibit glucose-6-phosphatase in rat liver microsomes. Biochem J. 1995 Apr 15;307(Pt 2):391–397. doi: 10.1042/bj3070391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Fulceri R., Nori A., Gamberucci A., Volpe P., Giunti R., Benedetti A. Fatty acyl-CoA esters induce calcium release from terminal cisternae of skeletal muscle. Cell Calcium. 1994 Feb;15(2):109–116. doi: 10.1016/0143-4160(94)90049-3. [DOI] [PubMed] [Google Scholar]
  54. Fyrst H., Knudsen J., Schott M. A., Lubin B. H., Kuypers F. A. Detection of acyl-CoA-binding protein in human red blood cells and investigation of its role in membrane phospholipid renewal. Biochem J. 1995 Mar 15;306(Pt 3):793–799. doi: 10.1042/bj3060793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Glick B. S., Rothman J. E. Possible role for fatty acyl-coenzyme A in intracellular protein transport. Nature. 1987 Mar 19;326(6110):309–312. doi: 10.1038/326309a0. [DOI] [PubMed] [Google Scholar]
  56. Goñi F. M., Requero M. A., Alonso A. Palmitoylcarnitine, a surface-active metabolite. FEBS Lett. 1996 Jul 15;390(1):1–5. doi: 10.1016/0014-5793(96)00603-5. [DOI] [PubMed] [Google Scholar]
  57. Gray P. W., Glaister D., Seeburg P. H., Guidotti A., Costa E. Cloning and expression of cDNA for human diazepam binding inhibitor, a natural ligand of an allosteric regulatory site of the gamma-aminobutyric acid type A receptor. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7547–7551. doi: 10.1073/pnas.83.19.7547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Grinstead G. F., Trzaskos J. M., Billheimer J. T., Gaylor J. L. Cytosolic modulators of activities of microsomal enzymes of cholesterol biosynthesis. Effects of Acyl-CoA inhibition and cytosolic Z-protein. Biochim Biophys Acta. 1983 Mar 22;751(1):41–51. doi: 10.1016/0005-2760(83)90255-2. [DOI] [PubMed] [Google Scholar]
  59. Guzmán M., Geelen M. J. Regulation of fatty acid oxidation in mammalian liver. Biochim Biophys Acta. 1993 Apr 23;1167(3):227–241. doi: 10.1016/0005-2760(93)90224-w. [DOI] [PubMed] [Google Scholar]
  60. Halle-Smith S. C., Murray A. G., Selwyn M. J. Palmitoyl-CoA inhibits the mitochondrial inner membrane anion-conducting channel. FEBS Lett. 1988 Aug 15;236(1):155–158. doi: 10.1016/0014-5793(88)80305-3. [DOI] [PubMed] [Google Scholar]
  61. Halperin M. L., Robinson B. H., Fritz I. B. Effects of palmitoyl CoA on citrate and malate transport by rat liver mitochondria. Proc Natl Acad Sci U S A. 1972 Apr;69(4):1003–1007. doi: 10.1073/pnas.69.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Haq R. U., Tsao F., Shrago E. Relation of lung fatty acid binding protein to the biosynthesis of pulmonary phosphatidic acid and phosphatidylcholine. J Lipid Res. 1987 Feb;28(2):216–220. [PubMed] [Google Scholar]
  63. Heldt H. W., Klingenberg M. Differences between the reactivity of endogenous and exogenous adenine nucleotides in mitochondria as studied at low temperature. Eur J Biochem. 1968 Mar;4(1):1–8. doi: 10.1111/j.1432-1033.1968.tb00165.x. [DOI] [PubMed] [Google Scholar]
  64. Hills M. J., Dann R., Lydiate D., Sharpe A. Molecular cloning of a cDNA from Brassica napus L. for a homologue of acyl-CoA-binding protein. Plant Mol Biol. 1994 Aug;25(5):917–920. doi: 10.1007/BF00028886. [DOI] [PubMed] [Google Scholar]
  65. Holness M. J., Liu Y. L., Sugden M. C. Time courses of the responses of pyruvate dehydrogenase activities to short-term starvation in diaphragm and selected skeletal muscles of the rat. Biochem J. 1989 Dec 15;264(3):771–776. doi: 10.1042/bj2640771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hu D. D., Eftink M. R. Thermodynamic studies of the interaction of trp aporepressor with tryptophan analogs. Biophys Chem. 1994 Apr;49(3):233–239. doi: 10.1016/0301-4622(93)e0073-e. [DOI] [PubMed] [Google Scholar]
  67. Idell-Wenger J. A., Grotyohann L. W., Neely J. R. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem. 1978 Jun 25;253(12):4310–4318. [PubMed] [Google Scholar]
  68. Iritani N., Fukuda E., Inoguchi K. A possible role of Z protein in dietary control of hepatic triacylglycerol synthesis. J Nutr Sci Vitaminol (Tokyo) 1980;26(3):271–277. doi: 10.3177/jnsv.26.271. [DOI] [PubMed] [Google Scholar]
  69. Jepson C. A., Yeaman S. J. Inhibition of hormone-sensitive lipase by intermediary lipid metabolites. FEBS Lett. 1992 Sep 28;310(2):197–200. doi: 10.1016/0014-5793(92)81328-j. [DOI] [PubMed] [Google Scholar]
  70. Juguelin H., Bessoule J. J., Cassagne C. Interaction of amphiphilic substrates (acyl-CoAs) and their metabolites (free fatty acids) with microsomes from mouse sciatic nerves. Biochim Biophys Acta. 1991 Sep 10;1068(1):41–51. doi: 10.1016/0005-2736(91)90058-g. [DOI] [PubMed] [Google Scholar]
  71. Kakar S. S., Huang W. H., Askari A. Control of cardiac sodium pump by long-chain acyl coenzymes A. J Biol Chem. 1987 Jan 5;262(1):42–45. [PubMed] [Google Scholar]
  72. Kamiryo T., Parthasarathy S., Numa S. Evidence that acyl coenzyme A synthetase activity is required for repression of yeast acetyl coenzyme A carboxylase by exogenous fatty acids. Proc Natl Acad Sci U S A. 1976 Feb;73(2):386–390. doi: 10.1073/pnas.73.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Ketterer B., Tipping E., Hackney J. F., Beale D. A low-molecular-weight protein from rat liver that resembles ligandin in its binding properties. Biochem J. 1976 Jun 1;155(3):511–521. doi: 10.1042/bj1550511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Klein K., Steinberg R., Fiethen B., Overath P. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem. 1971 Apr;19(3):442–450. doi: 10.1111/j.1432-1033.1971.tb01334.x. [DOI] [PubMed] [Google Scholar]
  75. Knudsen J., Clark S., Dils R. Acyl-CoA hydrolase(s) in rabbit mammary gland which control the chain length of fatty acids synthesised. Biochem Biophys Res Commun. 1975 Aug 4;65(3):921–926. doi: 10.1016/s0006-291x(75)80473-6. [DOI] [PubMed] [Google Scholar]
  76. Knudsen J., Clark S., Dils R. Purification and some properties of a medium-chain acyl-thioester hydrolase from lactating-rabbit mammary gland which terminates chain elongation in fatty acid synthesis. Biochem J. 1976 Dec 15;160(3):683–691. doi: 10.1042/bj1600683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Knudsen J., Faergeman N. J., Skøtt H., Hummel R., Børsting C., Rose T. M., Andersen J. S., Højrup P., Roepstorff P., Kristiansen K. Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size. Biochem J. 1994 Sep 1;302(Pt 2):479–485. doi: 10.1042/bj3020479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Knudsen J., Højrup P., Hansen H. O., Hansen H. F., Roepstorff P. Acyl-CoA-binding protein in the rat. Purification, binding characteristics, tissue concentrations and amino acid sequence. Biochem J. 1989 Sep 1;262(2):513–519. doi: 10.1042/bj2620513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Kobayashi A., Fujisawa S. Effect of L-carnitine on mitochondrial acyl CoA esters in the ischemic dog heart. J Mol Cell Cardiol. 1994 Apr;26(4):499–508. doi: 10.1006/jmcc.1994.1060. [DOI] [PubMed] [Google Scholar]
  80. Kolmer M., Roos C., Tirronen M., Myöhänen S., Alho H. Tissue-specific expression of the diazepam-binding inhibitor in Drosophila melanogaster: cloning, structure, and localization of the gene. Mol Cell Biol. 1994 Oct;14(10):6983–6995. doi: 10.1128/mcb.14.10.6983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Korchak H. M., Kane L. H., Rossi M. W., Corkey B. E. Long chain acyl coenzyme A and signaling in neutrophils. An inhibitor of acyl coenzyme A synthetase, triacsin C, inhibits superoxide anion generation and degranulation by human neutrophils. J Biol Chem. 1994 Dec 2;269(48):30281–30287. [PubMed] [Google Scholar]
  82. Kragelund B. B., Højrup P., Jensen M. S., Schjerling C. K., Juul E., Knudsen J., Poulsen F. M. Fast and one-step folding of closely and distantly related homologous proteins of a four-helix bundle family. J Mol Biol. 1996 Feb 16;256(1):187–200. doi: 10.1006/jmbi.1996.0076. [DOI] [PubMed] [Google Scholar]
  83. Kruszynska Y. T., McCormack J. G., McIntyre N. Effects of non-esterified fatty acid availability on insulin stimulated glucose utilisation and tissue pyruvate dehydrogenase activity in the rat. Diabetologia. 1990 Jul;33(7):396–402. doi: 10.1007/BF00404087. [DOI] [PubMed] [Google Scholar]
  84. LANDS W. E., HART P. METABOLISM OF GLYCEROLIPIDS. VI. SPECIFICITIES OF ACYL COENZYME A: PHOSPHOLIPID ACYLTRANSFERASES. J Biol Chem. 1965 May;240:1905–1911. [PubMed] [Google Scholar]
  85. Larsson O., Deeney J. T., Bränström R., Berggren P. O., Corkey B. E. Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity. J Biol Chem. 1996 May 3;271(18):10623–10626. doi: 10.1074/jbc.271.18.10623. [DOI] [PubMed] [Google Scholar]
  86. Lehrer G., Panini S. R., Rogers D. H., Rudney H. Modulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase by lipid inhibitors, substrates, and cytosolic factors. J Biol Chem. 1981 Jun 10;256(11):5612–5619. [PubMed] [Google Scholar]
  87. Lemasters J. J., Sowers A. E. Phosphate dependence and atractyloside inhibition of mitochondrial oxidative phosphorylation. The ADP-ATP carrier is rate-limiting. J Biol Chem. 1979 Feb 25;254(4):1248–1251. [PubMed] [Google Scholar]
  88. Li Q. L., Yamamoto N., Inoue A., Morisawa S. Fatty acyl-CoAs are potent inhibitors of the nuclear thyroid hormone receptor in vitro. J Biochem. 1990 May;107(5):699–702. doi: 10.1093/oxfordjournals.jbchem.a123111. [DOI] [PubMed] [Google Scholar]
  89. Li Q., Yamamoto N., Morisawa S., Inoue A. Fatty acyl-CoA binding activity of the nuclear thyroid hormone receptor. J Cell Biochem. 1993 Apr;51(4):458–464. doi: 10.1002/jcb.2400510411. [DOI] [PubMed] [Google Scholar]
  90. Lihrmann I., Plaquevent J. C., Tostivint H., Raijmakers R., Tonon M. C., Conlon J. M., Vaudry H. Frog diazepam-binding inhibitor: peptide sequence, cDNA cloning, and expression in the brain. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6899–6903. doi: 10.1073/pnas.91.15.6899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Lunzer M. A., Manning J. A., Ockner R. K. Inhibition of rat liver acetyl coenzyme A carboxylase by long chain acyl coenzyme A and fatty acid. Modulation by fatty acid-binding protein. J Biol Chem. 1977 Aug 10;252(15):5483–5487. [PubMed] [Google Scholar]
  92. Majumdar S., Rossi M. W., Fujiki T., Phillips W. A., Disa S., Queen C. F., Johnston R. B., Jr, Rosen O. M., Corkey B. E., Korchak H. M. Protein kinase C isotypes and signaling in neutrophils. Differential substrate specificities of a translocatable calcium- and phospholipid-dependent beta-protein kinase C and a phospholipid-dependent protein kinase which is inhibited by long chain fatty acyl coenzyme A. J Biol Chem. 1991 May 15;266(14):9285–9294. [PubMed] [Google Scholar]
  93. Mandrup S., Hummel R., Ravn S., Jensen G., Andreasen P. H., Gregersen N., Knudsen J., Kristiansen K. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes. A typical housekeeping gene family. J Mol Biol. 1992 Dec 5;228(3):1011–1022. doi: 10.1016/0022-2836(92)90888-q. [DOI] [PubMed] [Google Scholar]
  94. Mandrup S., Jepsen R., Skøtt H., Rosendal J., Højrup P., Kristiansen K., Knudsen J. Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast. Biochem J. 1993 Mar 1;290(Pt 2):369–374. doi: 10.1042/bj2900369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Marquardt H., Todaro G. J., Shoyab M. Complete amino acid sequences of bovine and human endozepines. Homology with rat diazepam binding inhibitor. J Biol Chem. 1986 Jul 25;261(21):9727–9731. [PubMed] [Google Scholar]
  96. McDonough V. M., Stukey J. E., Martin C. E. Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem. 1992 Mar 25;267(9):5931–5936. [PubMed] [Google Scholar]
  97. McGarry J. D., Leatherman G. F., Foster D. W. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem. 1978 Jun 25;253(12):4128–4136. [PubMed] [Google Scholar]
  98. Mikkelsen J., Højrup P., Nielsen P. F., Roepstorff P., Knudsen J. Amino acid sequence of acyl-CoA-binding protein from cow liver. Biochem J. 1987 Aug 1;245(3):857–861. doi: 10.1042/bj2450857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Mikkelsen J., Knudsen J. Acyl-CoA-binding protein from cow. Binding characteristics and cellular and tissue distribution. Biochem J. 1987 Dec 15;248(3):709–714. doi: 10.1042/bj2480709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Mikkelsen J., Knudsen J. Acyl-CoA-binding protein from cow. Binding characteristics and cellular and tissue distribution. Biochem J. 1987 Dec 15;248(3):709–714. doi: 10.1042/bj2480709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Mishkin S., Turcotte R. Stimulation of monoacylglycerophosphate formation by Z protein. Biochem Biophys Res Commun. 1974 Sep 9;60(1):376–381. doi: 10.1016/0006-291x(74)90215-0. [DOI] [PubMed] [Google Scholar]
  102. Mishkin S., Turcotte R. The binding of long chain fatty acid CoA to Z, a cytoplasmic protein present in liver and other tissues of the rat. Biochem Biophys Res Commun. 1974 Apr 8;57(3):918–926. doi: 10.1016/0006-291x(74)90633-0. [DOI] [PubMed] [Google Scholar]
  103. Mogensen I. B., Schulenberg H., Hansen H. O., Spener F., Knudsen J. A novel acyl-CoA-binding protein from bovine liver. Effect on fatty acid synthesis. Biochem J. 1987 Jan 1;241(1):189–192. doi: 10.1042/bj2410189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Moore K. H., Dandurand D. M., Kiechle F. L. Fasting induced alterations in mitochondrial palmitoyl-CoA metabolism may inhibit adipocyte pyruvate dehydrogenase activity. Int J Biochem. 1992 May;24(5):809–814. doi: 10.1016/0020-711x(92)90017-u. [DOI] [PubMed] [Google Scholar]
  105. Murthy M. S., Pande S. V. Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J. 1987 Dec 15;248(3):727–733. doi: 10.1042/bj2480727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Nesher M., Boneh A. Effect of fatty acids and their acyl-CoA esters on protein kinase C activity in fibroblasts: possible implications in fatty acid oxidation defects. Biochim Biophys Acta. 1994 Mar 10;1221(1):66–72. doi: 10.1016/0167-4889(94)90217-8. [DOI] [PubMed] [Google Scholar]
  107. Newman C. M., Magee A. I. Posttranslational processing of the ras superfamily of small GTP-binding proteins. Biochim Biophys Acta. 1993 May 25;1155(1):79–96. doi: 10.1016/0304-419x(93)90023-6. [DOI] [PubMed] [Google Scholar]
  108. Nikawa J., Tanabe T., Ogiwara H., Shiba T., Numa S. Inhibitory effects of long-chain acyl coenzyme A analogues on rat liver acetyl coenzyme A carboxylase. FEBS Lett. 1979 Jun 15;102(2):223–226. doi: 10.1016/0014-5793(79)80005-8. [DOI] [PubMed] [Google Scholar]
  109. Noy N., Donnelly T. M., Zakim D. Physical-chemical model for the entry of water-insoluble compounds into cells. Studies of fatty acid uptake by the liver. Biochemistry. 1986 Apr 22;25(8):2013–2021. doi: 10.1021/bi00356a027. [DOI] [PubMed] [Google Scholar]
  110. Numa S., Yamashita S. Regulation of lipogenesis in animal tissues. Curr Top Cell Regul. 1974;8(0):197–246. doi: 10.1016/b978-0-12-152808-9.50012-2. [DOI] [PubMed] [Google Scholar]
  111. Nunn W. D. A molecular view of fatty acid catabolism in Escherichia coli. Microbiol Rev. 1986 Jun;50(2):179–192. doi: 10.1128/mr.50.2.179-192.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. O'Doherty P. J., Kuksis A. Stimulation of triacylglycerol synthesis by Z protein in rat liver and intestinal mucosa. FEBS Lett. 1975 Dec 15;60(2):256–258. doi: 10.1016/0014-5793(75)80725-3. [DOI] [PubMed] [Google Scholar]
  113. Ockner R. K., Manning J. A. Fatty acid binding protein. Role in esterification of absorbed long chain fatty acid in rat intestine. J Clin Invest. 1976 Sep;58(3):632–641. doi: 10.1172/JCI108510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Ogiwara H., Tanabe T., Nikawa J., Numa S. Inhibition of rat-liver acetyl-coenzyme-A carboxylase by palmitoyl-coenzyme A. Formation of equimolar enzyme-inhibitor complex. Eur J Biochem. 1978 Aug 15;89(1):33–41. doi: 10.1111/j.1432-1033.1978.tb20893.x. [DOI] [PubMed] [Google Scholar]
  115. Ong D. E. Cellular transport and metabolism of vitamin A: roles of the cellular retinoid-binding proteins. Nutr Rev. 1994 Feb;52(2 Pt 2):S24–S31. doi: 10.1111/j.1753-4887.1994.tb01383.x. [DOI] [PubMed] [Google Scholar]
  116. Oram J. F., Wenger J. I., Neely J. R. Regulation of long chain fatty acid activation in heart muscle. J Biol Chem. 1975 Jan 10;250(1):73–78. [PubMed] [Google Scholar]
  117. Overath P., Pauli G., Schairer H. U. Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem. 1969 Feb;7(4):559–574. [PubMed] [Google Scholar]
  118. Owens G. P., Sinha A. K., Sikela J. M., Hahn W. E. Sequence and expression of the murine diazepam binding inhibitor. Brain Res Mol Brain Res. 1989 Nov;6(2-3):101–108. doi: 10.1016/0169-328x(89)90043-0. [DOI] [PubMed] [Google Scholar]
  119. Pande S. V. Reversal by CoA of palmityl-CoA inhibition of long chain acyl-CoA synthetase activity. Biochim Biophys Acta. 1973 Apr 13;306(1):15–20. doi: 10.1016/0005-2760(73)90202-6. [DOI] [PubMed] [Google Scholar]
  120. Paulussen R. J., Veerkamp J. H. Intracellular fatty-acid-binding proteins. Characteristics and function. Subcell Biochem. 1990;16:175–226. doi: 10.1007/978-1-4899-1621-1_7. [DOI] [PubMed] [Google Scholar]
  121. Paulussen R. J., van der Logt C. P., Veerkamp J. H. Characterization and binding properties of fatty acid-binding proteins from human, pig, and rat heart. Arch Biochem Biophys. 1988 Aug 1;264(2):533–545. doi: 10.1016/0003-9861(88)90319-0. [DOI] [PubMed] [Google Scholar]
  122. Peitzsch R. M., McLaughlin S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry. 1993 Oct 5;32(39):10436–10443. doi: 10.1021/bi00090a020. [DOI] [PubMed] [Google Scholar]
  123. Pfanner N., Glick B. S., Arden S. R., Rothman J. E. Fatty acylation promotes fusion of transport vesicles with Golgi cisternae. J Cell Biol. 1990 Apr;110(4):955–961. doi: 10.1083/jcb.110.4.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Pfanner N., Orci L., Glick B. S., Amherdt M., Arden S. R., Malhotra V., Rothman J. E. Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell. 1989 Oct 6;59(1):95–102. doi: 10.1016/0092-8674(89)90872-6. [DOI] [PubMed] [Google Scholar]
  125. Powell G. L., Grothusen J. R., Zimmerman J. K., Evans C. A., Fish W. W. A re-examination of some properties of fatty acyl-CoA micelles. J Biol Chem. 1981 Dec 25;256(24):12740–12747. [PubMed] [Google Scholar]
  126. Powell P. J., Lau S. M., Killian D., Thorpe C. Interaction of acyl coenzyme A substrates and analogues with pig kidney medium-chain acyl-coA dehydrogenase. Biochemistry. 1987 Jun 16;26(12):3704–3710. doi: 10.1021/bi00386a066. [DOI] [PubMed] [Google Scholar]
  127. Prentki M., Corkey B. E. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. 1996 Mar;45(3):273–283. doi: 10.2337/diab.45.3.273. [DOI] [PubMed] [Google Scholar]
  128. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  129. Prentki M. New insights into pancreatic beta-cell metabolic signaling in insulin secretion. Eur J Endocrinol. 1996 Mar;134(3):272–286. doi: 10.1530/eje.0.1340272. [DOI] [PubMed] [Google Scholar]
  130. Prentki M., Vischer S., Glennon M. C., Regazzi R., Deeney J. T., Corkey B. E. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem. 1992 Mar 25;267(9):5802–5810. [PubMed] [Google Scholar]
  131. Pusch W., Balvers M., Hunt N., Ivell R. A novel endozepine-like peptide (ELP) is exclusively expressed in male germ cells. Mol Cell Endocrinol. 1996 Aug 30;122(1):69–80. doi: 10.1016/0303-7207(96)03874-9. [DOI] [PubMed] [Google Scholar]
  132. Raman N., DiRusso C. C. Analysis of acyl coenzyme A binding to the transcription factor FadR and identification of amino acid residues in the carboxyl terminus required for ligand binding. J Biol Chem. 1995 Jan 20;270(3):1092–1097. doi: 10.1074/jbc.270.3.1092. [DOI] [PubMed] [Google Scholar]
  133. Rasmussen J. T., Börchers T., Knudsen J. Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters. Biochem J. 1990 Feb 1;265(3):849–855. doi: 10.1042/bj2650849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Rasmussen J. T., Faergeman N. J., Kristiansen K., Knudsen J. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis. Biochem J. 1994 Apr 1;299(Pt 1):165–170. doi: 10.1042/bj2990165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Rasmussen J. T., Rosendal J., Knudsen J. Interaction of acyl-CoA binding protein (ACBP) on processes for which acyl-CoA is a substrate, product or inhibitor. Biochem J. 1993 Jun 15;292(Pt 3):907–913. doi: 10.1042/bj2920907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Requero M. A., González M., Goñi F. M., Alonso A., Fidelio G. Differential penetration of fatty acyl-coenzyme A and fatty acylcarnitines into phospholipid monolayers. FEBS Lett. 1995 Jan 2;357(1):75–78. doi: 10.1016/0014-5793(94)01326-v. [DOI] [PubMed] [Google Scholar]
  137. Requero M. A., Goñi F. M., Alonso A. The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine. A comparative study. Biochemistry. 1995 Aug 22;34(33):10400–10405. doi: 10.1021/bi00033a011. [DOI] [PubMed] [Google Scholar]
  138. Rolf B., Oudenampsen-Krüger E., Börchers T., Faergeman N. J., Knudsen J., Lezius A., Spener F. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim Biophys Acta. 1995 Dec 7;1259(3):245–253. doi: 10.1016/0005-2760(95)00170-0. [DOI] [PubMed] [Google Scholar]
  139. Rosendal J., Ertbjerg P., Knudsen J. Characterization of ligand binding to acyl-CoA-binding protein. Biochem J. 1993 Mar 1;290(Pt 2):321–326. doi: 10.1042/bj2900321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Rosendal J., Knudsen J. A fast and versatile method for extraction and quantitation of long-chain acyl-CoA esters from tissue: content of individual long-chain acyl-CoA esters in various tissues from fed rat. Anal Biochem. 1992 Nov 15;207(1):63–67. doi: 10.1016/0003-2697(92)90500-7. [DOI] [PubMed] [Google Scholar]
  141. Runswick M. J., Powell S. J., Nyren P., Walker J. E. Sequence of the bovine mitochondrial phosphate carrier protein: structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. EMBO J. 1987 May;6(5):1367–1373. doi: 10.1002/j.1460-2075.1987.tb02377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Ruoho A. E., Woldegiorgis G., Kobayashi C., Shrago E. Specific labeling of beef heart mitochondrial ADP/ATP carrier with N-(3-iodo-4-azidophenylpropionamido)cysteinyl- 5-(2'-thiopyridyl)cysteine-coenzyme A (ACT-CoA), a newly synthesized 125I-coenzyme A derivative photolabel. J Biol Chem. 1989 Mar 5;264(7):4168–4172. [PubMed] [Google Scholar]
  143. Rys-Sikora K. E., Ghosh T. K., Gill D. L. Modification of GTP-activated calcium translocation by fatty acyl-CoA esters. Evidence for a GTP-induced prefusion event. J Biol Chem. 1994 Dec 16;269(50):31607–31613. [PubMed] [Google Scholar]
  144. Scallen T. J., Noland B. J., Gavey K. L., Bass N. M., Ockner R. K., Chanderbhan R., Vahouny G. V. Sterol carrier protein 2 and fatty acid-binding protein. Separate and distinct physiological functions. J Biol Chem. 1985 Apr 25;260(8):4733–4739. [PubMed] [Google Scholar]
  145. Schjerling C. K., Hummel R., Hansen J. K., Borsting C., Mikkelsen J. M., Kristiansen K., Knudsen J. Disruption of the gene encoding the acyl-CoA-binding protein (ACB1) perturbs acyl-CoA metabolism in Saccharomyces cerevisiae. J Biol Chem. 1996 Sep 13;271(37):22514–22521. doi: 10.1074/jbc.271.37.22514. [DOI] [PubMed] [Google Scholar]
  146. Shrago E., Woldegiorgis G., Ruoho A. E., DiRusso C. C. Fatty acyl CoA esters as regulators of cell metabolism. Prostaglandins Leukot Essent Fatty Acids. 1995 Feb-Mar;52(2-3):163–166. doi: 10.1016/0952-3278(95)90016-0. [DOI] [PubMed] [Google Scholar]
  147. Shug A. L., Shrago E., Bittar N., Folts J. D., Koke J. R. Acyl-CoA inhibition of adenine nucleotide translocation in ischemic myocardium. Am J Physiol. 1975 Mar;228(3):689–692. doi: 10.1152/ajplegacy.1975.228.3.689. [DOI] [PubMed] [Google Scholar]
  148. Shug A., Lerner E., Elson C., Shrago E. The inhibition of adenine nucleotide translocase activity by oleoyl CoA and its reversal in rat liver mitochondria. Biochem Biophys Res Commun. 1971 May 7;43(3):557–563. doi: 10.1016/0006-291x(71)90650-4. [DOI] [PubMed] [Google Scholar]
  149. Sigurskjold B. W., Berland C. R., Svensson B. Thermodynamics of inhibitor binding to the catalytic site of glucoamylase from Aspergillus niger determined by displacement titration calorimetry. Biochemistry. 1994 Aug 23;33(33):10191–10199. doi: 10.1021/bi00199a048. [DOI] [PubMed] [Google Scholar]
  150. Siliprandi D., Biban C., Testa S., Toninello A., Siliprandi N. Effects of palmitoyl CoA and palmitoyl carnitine on the membrane potential and Mg2+ content of rat heart mitochondria. Mol Cell Biochem. 1992 Oct 21;116(1-2):117–123. doi: 10.1007/978-1-4615-3514-0_17. [DOI] [PubMed] [Google Scholar]
  151. Simons R. W., Egan P. A., Chute H. T., Nunn W. D. Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in gene fadR. J Bacteriol. 1980 May;142(2):621–632. doi: 10.1128/jb.142.2.621-632.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Simons R. W., Hughes K. T., Nunn W. D. Regulation of fatty acid degradation in Escherichia coli: dominance studies with strains merodiploid in gene fadR. J Bacteriol. 1980 Aug;143(2):726–730. doi: 10.1128/jb.143.2.726-730.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Sreekrishna K., Gunsberg S., Wakil S. J., Joshi V. C. Interaction of the fluorescent analogue stearoyl-(1,N6)-etheno coenzyme A with chicken liver acetyl coenzyme A carboxylase. J Biol Chem. 1980 Apr 25;255(8):3348–3351. [PubMed] [Google Scholar]
  154. Stanley J. C. The glucose-fatty acid cycle. Relationship between glucose utilization in muscle, fatty acid oxidation in muscle and lipolysis in adipose tissue. Br J Anaesth. 1981 Feb;53(2):123–129. doi: 10.1093/bja/53.2.123. [DOI] [PubMed] [Google Scholar]
  155. Sterchele P. F., Vanden Heuvel J. P., Davis J. W., 2nd, Shrago E., Knudsen J., Peterson R. E. Induction of hepatic acyl-CoA-binding protein and liver fatty acid-binding protein by perfluorodecanoic acid in rats. Lack of correlation with hepatic long-chain acyl-CoA levels. Biochem Pharmacol. 1994 Aug 30;48(5):955–966. doi: 10.1016/0006-2952(94)90366-2. [DOI] [PubMed] [Google Scholar]
  156. Svensson L. T., Kilpeläinen S. H., Hiltunen J. K., Alexson S. E. Characterization and isolation of enzymes that hydrolyze short-chain acyl-CoA in rat-liver mitochondria. Eur J Biochem. 1996 Jul 15;239(2):526–531. doi: 10.1111/j.1432-1033.1996.0526u.x. [DOI] [PubMed] [Google Scholar]
  157. Tardi P. G., Mukherjee J. J., Choy P. C. The quantitation of long-chain acyl-CoA in mammalian tissue. Lipids. 1992 Jan;27(1):65–67. doi: 10.1007/BF02537062. [DOI] [PubMed] [Google Scholar]
  158. Tippett P. S., Neet K. E. An allosteric model for the inhibition of glucokinase by long chain acyl coenzyme A. J Biol Chem. 1982 Nov 10;257(21):12846–12852. [PubMed] [Google Scholar]
  159. Tippett P. S., Neet K. E. Specific inhibition of glucokinase by long chain acyl coenzymes A below the critical micelle concentration. J Biol Chem. 1982 Nov 10;257(21):12839–12845. [PubMed] [Google Scholar]
  160. Todaro G. J., Rose T. M., Shoyab M. Human DBI (endozepine): relationship to a homologous membrane associated protein (MA-DBI). Neuropharmacology. 1991 Dec;30(12B):1373–1380. doi: 10.1016/s0028-3908(11)80004-3. [DOI] [PubMed] [Google Scholar]
  161. Tubbs P. K., Garland P. B. Variations in tissue contents of coenzyme A thio esters and possible metabolic implications. Biochem J. 1964 Dec;93(3):550–557. doi: 10.1042/bj0930550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Vara E., Tamarit-Rodriguez J. Glucose stimulation of insulin secretion in islets of fed and starved rats and its dependence on lipid metabolism. Metabolism. 1986 Mar;35(3):266–271. doi: 10.1016/0026-0495(86)90212-x. [DOI] [PubMed] [Google Scholar]
  163. Ventura F. V., Ruiter J. P., Ijlst L., Almeida I. T., Wanders R. J. Inhibition of oxidative phosphorylation by palmitoyl-CoA in digitonin permeabilized fibroblasts: implications for long-chain fatty acid beta-oxidation disorders. Biochim Biophys Acta. 1995 Aug 15;1272(1):14–20. doi: 10.1016/0925-4439(95)00064-b. [DOI] [PubMed] [Google Scholar]
  164. Waku K. Origins and fates of fatty acyl-CoA esters. Biochim Biophys Acta. 1992 Mar 4;1124(2):101–111. doi: 10.1016/0005-2760(92)90085-a. [DOI] [PubMed] [Google Scholar]
  165. Webb N. R., Rose T. M., Malik N., Marquardt H., Shoyab M., Todaro G. J., Lee D. C. Bovine and human cDNA sequences encoding a putative benzodiazepine receptor ligand. DNA. 1987 Feb;6(1):71–79. doi: 10.1089/dna.1987.6.71. [DOI] [PubMed] [Google Scholar]
  166. Whitmer J. T., Idell-Wenger J. A., Rovetto M. J., Neely J. R. Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem. 1978 Jun 25;253(12):4305–4309. [PubMed] [Google Scholar]
  167. Wieland O. H. The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev Physiol Biochem Pharmacol. 1983;96:123–170. doi: 10.1007/BFb0031008. [DOI] [PubMed] [Google Scholar]
  168. Woldegiorgis G., Shrago E. Adenine nucleotide translocase activity and sensitivity to inhibitors in hepatomas. Comparison of the ADP/ATP carrier in mitochondria and in a purified reconstituted liposome system. J Biol Chem. 1985 Jun 25;260(12):7585–7590. [PubMed] [Google Scholar]
  169. Woldegiorgis G., Shrago E., Gipp J., Yatvin M. Fatty acyl coenzyme A-sensitive adenine nucleotide transport in a reconstituted liposome system. J Biol Chem. 1981 Dec 10;256(23):12297–12300. [PubMed] [Google Scholar]
  170. Woldegiorgis G., Yousufzai S. Y., Shrago E. Studies on the interaction of palmitoyl coenzyme A with the adenine nucleotide translocase. J Biol Chem. 1982 Dec 25;257(24):14783–14787. [PubMed] [Google Scholar]
  171. Wu-Rideout M. Y., Elson C., Shrago E. The role of fatty acid binding protein on the metabolism of fatty acids in isolated rat hepatocytes. Biochem Biophys Res Commun. 1976 Aug 9;71(3):809–816. doi: 10.1016/0006-291x(76)90903-7. [DOI] [PubMed] [Google Scholar]
  172. Yamada J., Furihata T., Tamura H., Watanabe T., Suga T. Long-chain acyl-CoA hydrolase from rat brain cytosol: purification, characterization, and immunohistochemical localization. Arch Biochem Biophys. 1996 Feb 1;326(1):106–114. doi: 10.1006/abbi.1996.0053. [DOI] [PubMed] [Google Scholar]
  173. Yamakawa N., Shimeno H., Soeda S., Nagamatsu A. Inhibition of proline endopeptidase activity by acyl-coenzyme A esters. Biochim Biophys Acta. 1990 Mar 1;1037(3):302–306. doi: 10.1016/0167-4838(90)90029-f. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES