Abstract
Modulation by alkalosis of basal leak Ca2+ entry and store-depletion-induced Ca2+ entry was investigated in the vascular endothelial cell line ECV 304. Ca2+ entry was monitored as the increase in the intracellular free Ca2+ concentration ([Ca2+]i) induced by elevation of the extracellular Ca2+ concentration. When ECV 304 cells were challenged with 100 nM thapsigargin in nominally Ca2+-free solution, [Ca2+]i increased transiently, and the increase in [Ca2+]i during a subsequent cumulative elevation of extracellular Ca2+ (from nominally Ca2+-free up to 5 mM) was markedly enhanced compared with non-stimulated cells (i.e. basal Ca2+ leak). Prolonged elevation of the extracellular pH (pHo) from 7.4 to 7.9 did not affect resting [Ca2+]i or the thapsigargin-induced [Ca2+]i transient evoked in nominally Ca2+-free solution, but increased leak Ca2+ entry as well as store-depletion-activated Ca2+ entry significantly. Basal Ca2+ leak and store-depletion-activated Ca2+ entry were enhanced either by acute elevation of pHo from 7.4 to 7.9 or by chronic alkalosis (pHo=7.9). Stimulation of Ca2+ entry by extracellular alkalosis was observed both in normal and in high extracellular K+ (110 mM) solution, suggesting that the effects of alkalosis are independent of membrane potential. The intracellular pH (pHi) increased slightly during both acute and chronic extracellular alkalosis (from 7.22+/-0.01 to 7.37+/-0.04 and 7. 45+/-0.05 respectively). Elevation of pHi to 7.60+/-0.06 at constant pHo by administration of 20 mM NH4Cl failed to stimulate, and in fact inhibited, store-depletion-activated Ca2+ entry. Our results demonstrate that a decrease in the extracellular but not the intracellular proton concentration promotes both basal and stimulated Ca2+ entry into endothelial cells.
Full Text
The Full Text of this article is available as a PDF (412.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams D. J., Barakeh J., Laskey R., Van Breemen C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 1989 Oct;3(12):2389–2400. doi: 10.1096/fasebj.3.12.2477294. [DOI] [PubMed] [Google Scholar]
- Aickin C. C. Direct measurement of intracellular pH and buffering power in smooth muscle cells of guinea-pig vas deferens. J Physiol. 1984 Apr;349:571–585. doi: 10.1113/jphysiol.1984.sp015174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ardissino D., De Servi S., Falcone C., Barberis P., Scuri P. M., Previtali M., Specchia G., Montemartini C. Role of hypocapnic alkalosis in hyperventilation-induced coronary artery spasm in variant angina. Am J Cardiol. 1987 Mar 1;59(6):707–709. doi: 10.1016/0002-9149(87)91200-8. [DOI] [PubMed] [Google Scholar]
- Austin C., Wray S. Extracellular pH signals affect rat vascular tone by rapid transduction into intracellular pH changes. J Physiol. 1993 Jul;466:1–8. [PMC free article] [PubMed] [Google Scholar]
- Batlle D. C., Peces R., LaPointe M. S., Ye M., Daugirdas J. T. Cytosolic free calcium regulation in response to acute changes in intracellular pH in vascular smooth muscle. Am J Physiol. 1993 Apr;264(4 Pt 1):C932–C943. doi: 10.1152/ajpcell.1993.264.4.C932. [DOI] [PubMed] [Google Scholar]
- Berk B. C., Canessa M., Vallega G., Alexander R. W. Agonist-mediated changes in intracellular pH: role in vascular smooth muscle cell function. J Cardiovasc Pharmacol. 1988;12 (Suppl 5):S104–S114. [PubMed] [Google Scholar]
- Colden-Stanfield M., Schilling W. P., Ritchie A. K., Eskin S. G., Navarro L. T., Kunze D. L. Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ Res. 1987 Nov;61(5):632–640. doi: 10.1161/01.res.61.5.632. [DOI] [PubMed] [Google Scholar]
- Danthuluri N. R., Kim D., Brock T. A. Intracellular alkalinization leads to Ca2+ mobilization from agonist-sensitive pools in bovine aortic endothelial cells. J Biol Chem. 1990 Nov 5;265(31):19071–19076. [PubMed] [Google Scholar]
- Demirel E., Laskey R. E., Purkerson S., van Breemen C. The passive calcium leak in cultured porcine aortic endothelial cells. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1197–1203. doi: 10.1006/bbrc.1993.1344. [DOI] [PubMed] [Google Scholar]
- Ellis D., Thomas R. C. Direct measurement of the intracellular pH of mammalian cardiac muscle. J Physiol. 1976 Nov;262(3):755–771. doi: 10.1113/jphysiol.1976.sp011619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleming I., Hecker M., Busse R. Intracellular alkalinization induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells. Circ Res. 1994 Jun;74(6):1220–1226. doi: 10.1161/01.res.74.6.1220. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Vanhoutte P. M. Endothelium-derived relaxing and contracting factors. FASEB J. 1989 Jul;3(9):2007–2018. [PubMed] [Google Scholar]
- Ghigo D., Bussolino F., Garbarino G., Heller R., Turrini F., Pescarmona G., Cragoe E. J., Jr, Pegoraro L., Bosia A. Role of Na+/H+ exchange in thrombin-induced platelet-activating factor production by human endothelial cells. J Biol Chem. 1988 Dec 25;263(36):19437–19446. [PubMed] [Google Scholar]
- Groschner K., Graier W. F., Kukovetz W. R. Activation of a small-conductance Ca(2+)-dependent K+ channel contributes to bradykinin-induced stimulation of nitric oxide synthesis in pig aortic endothelial cells. Biochim Biophys Acta. 1992 Oct 27;1137(2):162–170. doi: 10.1016/0167-4889(92)90198-k. [DOI] [PubMed] [Google Scholar]
- Groschner K., Graier W. F., Kukovetz W. R. Histamine induces K+, Ca2+, and Cl- currents in human vascular endothelial cells. Role of ionic currents in stimulation of nitric oxide biosynthesis. Circ Res. 1994 Aug;75(2):304–314. doi: 10.1161/01.res.75.2.304. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Himmel H. M., Whorton A. R., Strauss H. C. Intracellular calcium, currents, and stimulus-response coupling in endothelial cells. Hypertension. 1993 Jan;21(1):112–127. doi: 10.1161/01.hyp.21.1.112. [DOI] [PubMed] [Google Scholar]
- Jacob R., Merritt J. E., Hallam T. J., Rink T. J. Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature. 1988 Sep 1;335(6185):40–45. doi: 10.1038/335040a0. [DOI] [PubMed] [Google Scholar]
- Kitazono T., Takeshige K., Cragoe E. J., Jr, Minakami S. Intracellular pH changes of cultured bovine aortic endothelial cells in response to ATP addition. Biochem Biophys Res Commun. 1988 May 16;152(3):1304–1309. doi: 10.1016/s0006-291x(88)80427-3. [DOI] [PubMed] [Google Scholar]
- Klöckner U., Isenberg G. Calcium channel current of vascular smooth muscle cells: extracellular protons modulate gating and single channel conductance. J Gen Physiol. 1994 Apr;103(4):665–678. doi: 10.1085/jgp.103.4.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kontos H. A., Raper A. J., Patterson J. L. Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels. Stroke. 1977 May-Jun;8(3):358–360. doi: 10.1161/01.str.8.3.358. [DOI] [PubMed] [Google Scholar]
- Laskey R. E., Adams D. J., Johns A., Rubanyi G. M., van Breemen C. Membrane potential and Na(+)-K+ pump activity modulate resting and bradykinin-stimulated changes in cytosolic free calcium in cultured endothelial cells from bovine atria. J Biol Chem. 1990 Feb 15;265(5):2613–2619. [PubMed] [Google Scholar]
- Lückhoff A., Busse R. Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflugers Arch. 1990 May;416(3):305–311. doi: 10.1007/BF00392067. [DOI] [PubMed] [Google Scholar]
- Mitchell J. A., de Nucci G., Warner T. D., Vane J. R. Alkaline buffers release EDRF from bovine cultured aortic endothelial cells. Br J Pharmacol. 1991 Jun;103(2):1295–1302. doi: 10.1111/j.1476-5381.1991.tb09783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Moncada S., Vane J. R. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev. 1978 Sep;30(3):293–331. [PubMed] [Google Scholar]
- Parekh A. B., Terlau H., Stühmer W. Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature. 1993 Aug 26;364(6440):814–818. doi: 10.1038/364814a0. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr Inositol phosphates and calcium entry. Adv Second Messenger Phosphoprotein Res. 1992;26:143–160. [PubMed] [Google Scholar]
- Randriamampita C., Tsien R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993 Aug 26;364(6440):809–814. doi: 10.1038/364809a0. [DOI] [PubMed] [Google Scholar]
- Ritter J. M., Frazer C. E., Taylor G. W. pH-dependent stimulation by Ca2+ of prostacyclin synthesis in rat aortic rings: effects of drugs and inorganic ions. Br J Pharmacol. 1987 Jun;91(2):439–446. doi: 10.1111/j.1476-5381.1987.tb10299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rooke T. W., Sparks H. V., Jr Effect of metabolic versus respiratory acid-base changes on isolated coronary artery and saphenous vein. Experientia. 1981;37(9):982–983. doi: 10.1007/BF01971792. [DOI] [PubMed] [Google Scholar]
- Schilling W. P., Cabello O. A., Rajan L. Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist-sensitive Ca(2+)-influx pathway. Biochem J. 1992 Jun 1;284(Pt 2):521–530. doi: 10.1042/bj2840521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schilling W. P., Rajan L., Strobl-Jager E. Characterization of the bradykinin-stimulated calcium influx pathway of cultured vascular endothelial cells. Saturability, selectivity, and kinetics. J Biol Chem. 1989 Aug 5;264(22):12838–12848. [PubMed] [Google Scholar]
- Schilling W. P., Ritchie A. K., Navarro L. T., Eskin S. G. Bradykinin-stimulated calcium influx in cultured bovine aortic endothelial cells. Am J Physiol. 1988 Aug;255(2 Pt 2):H219–H227. doi: 10.1152/ajpheart.1988.255.2.H219. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Sawasaki Y., Hata J., Mukai K., Goto T. Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell Dev Biol. 1990 Mar;26(3 Pt 1):265–274. doi: 10.1007/BF02624456. [DOI] [PubMed] [Google Scholar]
- Tanaka H., Wakabayashi I., Sakamoto K., Kakishita E. Mechanism of the potentiating effect of NH4Cl on vasoconstriction in rat aorta. Gen Pharmacol. 1996 Apr;27(3):535–538. doi: 10.1016/0306-3623(95)00104-2. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode. J Physiol. 1974 Apr;238(1):159–180. doi: 10.1113/jphysiol.1974.sp010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thuringer D., Diarra A., Sauvé R. Modulation by extracellular pH of bradykinin-evoked activation of Ca(2+)-activated K+ channels in endothelial cells. Am J Physiol. 1991 Sep;261(3 Pt 2):H656–H666. doi: 10.1152/ajpheart.1991.261.3.H656. [DOI] [PubMed] [Google Scholar]
- Tolkovsky A. M., Richards C. D. Na+/H+ exchange is the major mechanism of pH regulation in cultured sympathetic neurons: measurements in single cell bodies and neurites using a fluorescent pH indicator. Neuroscience. 1987 Sep;22(3):1093–1102. doi: 10.1016/0306-4522(87)92984-8. [DOI] [PubMed] [Google Scholar]
- Wakabayashi I., Groschner K. Evidence for a direct inhibitory effect of extracellular H+ on store depletion-activated Ca2+ entry in vascular endothelial cells. Biochem Biophys Res Commun. 1996 Apr 25;221(3):762–767. doi: 10.1006/bbrc.1996.0670. [DOI] [PubMed] [Google Scholar]
- Wakabayashi I., Kukovetz W. R., Groschner K. NH4Cl-induced contraction of porcine coronary artery involves activation of dihydropyridine-sensitive Ca2+ entry. Eur J Pharmacol. 1996 Mar 28;299(1-3):139–147. doi: 10.1016/0014-2999(95)00853-5. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Masaki T. Molecular biology and biochemistry of the endothelins. Trends Pharmacol Sci. 1989 Sep;10(9):374–378. doi: 10.1016/0165-6147(89)90011-4. [DOI] [PubMed] [Google Scholar]