Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 1;324(Pt 2):681–687. doi: 10.1042/bj3240681

Properties of a cysteine-free proton-pumping nicotinamide nucleotide transhydrogenase.

J Meuller 1, J Zhang 1, C Hou 1, P D Bragg 1, J Rydström 1
PMCID: PMC1218482  PMID: 9182734

Abstract

Nicotinamide nucleotide transhydrogenase from Escherichia coli was investigated with respect to the roles of its cysteine residues. This enzyme contains seven cysteines, of which five are located in the alpha subunit and two are in the beta subunit. All cysteines were replaced by site-directed mutagenesis. The final construct (alphaC292T, alphaC339T, alphaC395S, alphaC397T, alphaC435S, betaC147S, betaC260S) was inserted normally in the membrane and underwent the normal NADPH-dependent conformational change of the beta subunit to a trypsin-sensitive state. Reduction of NADP+ by NADH driven by ATP hydrolysis or respiration was between 32% and 65% of the corresponding wild-type activities. Likewise, the catalytic and proton pumping activities of the purified cysteine-free enzyme were at least 30% of the purified wild-type enzyme activities. The H+/H- ratio for both enzymes was 0.5, although the cysteine-free enzyme appeared to be more stable than the wild-type enzyme in proteoliposomes. No bound NADP(H) was detected in the enzymes. Modification of transhydrogenase by diethyl pyrocarbonate and the subsequent inhibition of the enzyme were unaffected by removal of the cysteines, indicating a lack of involvement of cysteines in this process. Replacement of cysteine residues in the alpha subunit resulted in no or little change in activity, suggesting that the basis for the decreased activity was probably the modification of the conserved beta-subunit residue Cys-260 or (less likely) the non-conserved beta-subunit residue Cys-147. It is concluded that the cysteine-free transhydrogenase is structurally and mechanistically very similar to the wild-type enzyme, with minor modifications of the properties of the NADP(H) site, possibly mediated by the betaC260S mutation. The cysteine-free construct will be a valuable tool for studying structure-function relationships of transhydrogenases.

Full Text

The Full Text of this article is available as a PDF (314.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad S., Glavas N. A., Bragg P. D. A mutation at Gly314 of the beta subunit of the Escherichia coli pyridine nucleotide transhydrogenase abolishes activity and affects the NADP(H)-induced conformational change. Eur J Biochem. 1992 Jul 15;207(2):733–739. doi: 10.1111/j.1432-1033.1992.tb17103.x. [DOI] [PubMed] [Google Scholar]
  2. Alexiev U., Marti T., Heyn M. P., Khorana H. G., Scherrer P. Covalently bound pH-indicator dyes at selected extracellular or cytoplasmic sites in bacteriorhodopsin. 2. Rotational orientation of helices D and E and kinetic correlation between M formation and proton release in bacteriorhodopsin micelles. Biochemistry. 1994 Nov 22;33(46):13693–13699. doi: 10.1021/bi00250a020. [DOI] [PubMed] [Google Scholar]
  3. Alexiev U., Scherrer P., Marti T., Khorana H. G., Heyn M. P. Time-resolved surface charge change on the cytoplasmic side of bacteriorhodopsin. FEBS Lett. 1995 Oct 2;373(1):81–84. doi: 10.1016/0014-5793(95)00985-i. [DOI] [PubMed] [Google Scholar]
  4. Altenbach C., Greenhalgh D. A., Khorana H. G., Hubbell W. L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1667–1671. doi: 10.1073/pnas.91.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bizouarn T., Diggle C., Quirk P. G., Grimley R. L., Cotton N. P., Thomas C. M., Jackson J. B. Interaction of nucleotides with the NAD(H)-binding domain of the proton-translocating transhydrogenase of Rhodospirillum rubrum. J Biol Chem. 1996 Apr 26;271(17):10103–10108. doi: 10.1074/jbc.271.17.10103. [DOI] [PubMed] [Google Scholar]
  6. Bizouarn T., Sazanov L. A., Aubourg S., Jackson J. B. Estimation of the H+/H- ratio of the reaction catalysed by the nicotinamide nucleotide transhydrogenase in chromatophores from over-expressing strains of Rhodospirillum rubrum and in liposomes inlaid with the purified bovine enzyme. Biochim Biophys Acta. 1996 Jan 11;1273(1):4–12. doi: 10.1016/0005-2728(95)00125-5. [DOI] [PubMed] [Google Scholar]
  7. Chang D. Y., Hou C., Bragg P. D. Anomalous effect of uncouplers on respiratory chain-linked transhydrogenation in Escherichia coli membranes: evidence for a localized proton pathway? Arch Biochem Biophys. 1992 Mar;293(2):246–253. doi: 10.1016/0003-9861(92)90392-a. [DOI] [PubMed] [Google Scholar]
  8. Clarke D. M., Loo T. W., Gillam S., Bragg P. D. Nucleotide sequence of the pntA and pntB genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli. Eur J Biochem. 1986 Aug 1;158(3):647–653. doi: 10.1111/j.1432-1033.1986.tb09802.x. [DOI] [PubMed] [Google Scholar]
  9. Diggle C., Bizouarn T., Cotton N. P., Jackson J. B. Properties of the purified, recombinant, NADP(H)-binding domain III of the proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum. Eur J Biochem. 1996 Oct 1;241(1):162–170. doi: 10.1111/j.1432-1033.1996.0162t.x. [DOI] [PubMed] [Google Scholar]
  10. Diggle C., Quirk P. G., Bizouarn T., Grimley R. I., Cotton N. P., Thomas C. M., Jackson J. B. Mutation of Tyr235 in the NAD(H)-binding subunit of the proton-translocating nicotinamide nucleotide transhydrogenase of Rhodospirillum rubrum affects the conformational dynamics of a mobile loop and lowers the catalytic activity of the enzyme. J Biol Chem. 1996 Apr 26;271(17):10109–10115. [PubMed] [Google Scholar]
  11. Dunten R. L., Sahin-Tóth M., Kaback H. R. Cysteine scanning mutagenesis of putative helix XI in the lactose permease of Escherichia coli. Biochemistry. 1993 Nov 30;32(47):12644–12650. doi: 10.1021/bi00210a012. [DOI] [PubMed] [Google Scholar]
  12. Earle S. R., O'Neal S. G., Fisher R. R. Chemical modification of mitochondrial transhydrogenase: evidence for two classes of sulfhydryl groups. Biochemistry. 1978 Oct 31;17(22):4683–4690. doi: 10.1021/bi00615a015. [DOI] [PubMed] [Google Scholar]
  13. Eytan G. D., Persson B., Ekebacke A., Rydström J. Energy-linked nicotinamide-nucleotide transhydrogenase. Characterization of reconstituted ATP-driven transhydrogenase from beef heart mitochondria. J Biol Chem. 1987 Apr 15;262(11):5008–5014. [PubMed] [Google Scholar]
  14. Feng Y., Menick D. R., Katz B. M., Beischel C. J., Hazard E. S., Misra S., Ebrey T. G., Crouch R. K. Probing of the retinal binding site of bacteriorhodopsin by affinity labeling. Biochemistry. 1994 Sep 27;33(38):11624–11630. doi: 10.1021/bi00204a025. [DOI] [PubMed] [Google Scholar]
  15. Frillingos S., Sahin-Tóth M., Persson B., Kaback H. R. Cysteine-scanning mutagenesis of putative helix VII in the lactose permease of Escherichia coli. Biochemistry. 1994 Jul 5;33(26):8074–8081. doi: 10.1021/bi00192a012. [DOI] [PubMed] [Google Scholar]
  16. Glavas N. A., Bragg P. D. The mechanism of hydride transfer between NADH and 3-acetylpyridine adenine dinucleotide by the pyridine nucleotide transhydrogenase of Escherichia coli. Biochim Biophys Acta. 1995 Oct 10;1231(3):297–303. doi: 10.1016/0005-2728(95)00089-2. [DOI] [PubMed] [Google Scholar]
  17. Glavas N. A., Hou C., Bragg P. D. Involvement of histidine-91 of the beta subunit in proton translocation by the pyridine nucleotide transhydrogenase of Escherichia coli. Biochemistry. 1995 Jun 13;34(23):7694–7702. doi: 10.1021/bi00023a016. [DOI] [PubMed] [Google Scholar]
  18. Glavas N., Ahmad S., Bragg P. D., Olausson T., Rydström J. Identification of N,N'-dicyclohexylcarbodiimide-reactive glutamic and aspartic acid residues in Escherichia coli transhydrogenase and the exchange of these by site-specific mutagenesis. J Biol Chem. 1993 Jul 5;268(19):14125–14130. [PubMed] [Google Scholar]
  19. Holmberg E., Olausson T., Hultman T., Rydström J., Ahmad S., Glavas N. A., Bragg P. D. Prediction and site-specific mutagenesis of residues in transmembrane alpha-helices of proton-pumping nicotinamide nucleotide transhydrogenases from Escherichia coli and bovine heart mitochondria. Biochemistry. 1994 Jun 21;33(24):7691–7700. doi: 10.1021/bi00190a024. [DOI] [PubMed] [Google Scholar]
  20. Houghton R. L., Fisher R. J., Sanadi D. R. Dependence of Escherichia coli pyridine nucleotide transhydrogenase on phospholipids and its sensitivity. Biochem Biophys Res Commun. 1976 Dec 6;73(3):751–757. doi: 10.1016/0006-291x(76)90873-1. [DOI] [PubMed] [Google Scholar]
  21. Hu X., Zhang J. W., Persson A., Rydström J. Characterization of the interaction of NADH with proton pumping E. coli transhydrogenase reconstituted in the absence and in the presence of bacteriorhodopsin. Biochim Biophys Acta. 1995 Apr 4;1229(1):64–72. doi: 10.1016/0005-2728(94)00187-a. [DOI] [PubMed] [Google Scholar]
  22. Hutton M., Day J. M., Bizouarn T., Jackson J. B. Kinetic resolution of the reaction catalysed by proton-translocating transhydrogenase from Escherichia coli as revealed by experiments with analogues of the nucleotide substrates. Eur J Biochem. 1994 Feb 1;219(3):1041–1051. doi: 10.1111/j.1432-1033.1994.tb18587.x. [DOI] [PubMed] [Google Scholar]
  23. Jackson J. B. The proton-translocating nicotinamide adenine dinucleotide transhydrogenase. J Bioenerg Biomembr. 1991 Oct;23(5):715–741. doi: 10.1007/BF00785998. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Landt O., Grunert H. P., Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene. 1990 Nov 30;96(1):125–128. doi: 10.1016/0378-1119(90)90351-q. [DOI] [PubMed] [Google Scholar]
  26. Meuller J., Hu X., Bunthof C., Olausson T., Rydström J. Identification of an aspartic acid residue in the beta subunit which is essential for catalysis and proton pumping by transhydrogenase from Escherichia coli. Biochim Biophys Acta. 1996 Mar 28;1273(3):191–194. doi: 10.1016/0005-2728(95)00154-9. [DOI] [PubMed] [Google Scholar]
  27. O'Neal S. G., Fisher R. R. Studies on sulfhydryl group modification of mitochondrial pyridine dinucleotide transhydrogenase. J Biol Chem. 1977 Jul 10;252(13):4552–4556. [PubMed] [Google Scholar]
  28. Olausson T., Fjellström O., Meuller J., Rydström J. Molecular biology of nicotinamide nucleotide transhydrogenase--a unique proton pump. Biochim Biophys Acta. 1995 Aug 15;1231(1):1–19. doi: 10.1016/0005-2728(95)00058-q. [DOI] [PubMed] [Google Scholar]
  29. Olausson T., Hultman T., Holmberg E., Rydström J., Ahmad S., Glavas N. A., Bragg P. D. Site-directed mutagenesis of tyrosine residues at nicotinamide nucleotide binding sites of Escherichia coli transhydrogenase. Biochemistry. 1993 Dec 7;32(48):13237–13244. doi: 10.1021/bi00211a036. [DOI] [PubMed] [Google Scholar]
  30. Persson B., Rydström J. Evidence for a role of a vicinal dithiol in catalysis and proton pumping in mitochondrial nicotinamide nucleotide transhydrogenase. Biochem Biophys Res Commun. 1987 Jan 30;142(2):573–578. doi: 10.1016/0006-291x(87)90312-3. [DOI] [PubMed] [Google Scholar]
  31. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  32. Petrov V. V., Slayman C. W. Site-directed mutagenesis of the yeast PMA1 H(+)-ATPase. Structural and functional role of cysteine residues. J Biol Chem. 1995 Dec 1;270(48):28535–28540. doi: 10.1074/jbc.270.48.28535. [DOI] [PubMed] [Google Scholar]
  33. Phelps D. C., Hatefi Y. Inhibition of the mitochondrial nicotinamide nucleotide transhydrogenase by dicyclohexylcarbodiimide and diethylpyrocarbonate. J Biol Chem. 1981 Aug 10;256(15):8217–8221. [PubMed] [Google Scholar]
  34. Richard P., Rigaud J. L., Gräber P. Reconstitution of CF0F1 into liposomes using a new reconstitution procedure. Eur J Biochem. 1990 Nov 13;193(3):921–925. doi: 10.1111/j.1432-1033.1990.tb19418.x. [DOI] [PubMed] [Google Scholar]
  35. Sahin-Tóth M., Kaback H. R. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Protein Sci. 1993 Jun;2(6):1024–1033. doi: 10.1002/pro.5560020615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sahin-Tóth M., Persson B., Schwieger J., Cohan P., Kaback H. R. Cysteine scanning mutagenesis of the N-terminal 32 amino acid residues in the lactose permease of Escherichia coli. Protein Sci. 1994 Feb;3(2):240–247. doi: 10.1002/pro.5560030208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Scherrer P., Alexiev U., Marti T., Khorana H. G., Heyn M. P. Covalently bound pH-indicator dyes at selected extracellular or cytoplasmic sites in bacteriorhodopsin. 1. Proton migration along the surface of bacteriorhodopsin micelles and its delayed transfer from surface to bulk. Biochemistry. 1994 Nov 22;33(46):13684–13692. doi: 10.1021/bi00250a019. [DOI] [PubMed] [Google Scholar]
  38. Singh A. P., Bragg P. D. The action of tributyltin chloride on energy-dependent transhydrogenation of NADP+ by NADH in membranes of Escherichia coli. Can J Biochem. 1979 Dec;57(12):1384–1391. doi: 10.1139/o79-184. [DOI] [PubMed] [Google Scholar]
  39. Steinhoff H. J., Mollaaghababa R., Altenbach C., Hideg K., Krebs M., Khorana H. G., Hubbell W. L. Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science. 1994 Oct 7;266(5182):105–107. doi: 10.1126/science.7939627. [DOI] [PubMed] [Google Scholar]
  40. Tong R. C., Glavas N. A., Bragg P. D. Topological analysis of the pyridine nucleotide transhydrogenase of Escherichia coli using proteolytic enzymes. Biochim Biophys Acta. 1991 Oct 11;1080(1):19–28. doi: 10.1016/0167-4838(91)90106-a. [DOI] [PubMed] [Google Scholar]
  41. Weitzman C., Kaback H. R. Cysteine scanning mutagenesis of helix V in the lactose permease of Escherichia coli. Biochemistry. 1995 Jul 25;34(29):9374–9379. doi: 10.1021/bi00029a013. [DOI] [PubMed] [Google Scholar]
  42. Whitley P., Nilsson L., von Heijne G. Three-dimensional model for the membrane domain of Escherichia coli leader peptidase based on disulfide mapping. Biochemistry. 1993 Aug 24;32(33):8534–8539. doi: 10.1021/bi00084a020. [DOI] [PubMed] [Google Scholar]
  43. Wu J., Perrin D. M., Sigman D. S., Kaback H. R. Helix packing of lactose permease in Escherichia coli studied by site-directed chemical cleavage. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9186–9190. doi: 10.1073/pnas.92.20.9186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yamaguchi M., Hatefi Y. Mitochondrial nicotinamide nucleotide transhydrogenase: NADPH binding increases and NADP binding decreases the acidity and susceptibility to modification of cysteine-893. Biochemistry. 1989 Jul 11;28(14):6050–6056. doi: 10.1021/bi00440a049. [DOI] [PubMed] [Google Scholar]
  45. Yamaguchi M., Hatefi Y. Mitochondrial nicotinamide nucleotide transhydrogenase: inhibition by ethoxyformic anhydride, dansyl chloride, and pyridoxal phosphate. Arch Biochem Biophys. 1985 Nov 15;243(1):20–27. doi: 10.1016/0003-9861(85)90769-6. [DOI] [PubMed] [Google Scholar]
  46. van Iwaarden P. R., Pastore J. C., Konings W. N., Kaback H. R. Construction of a functional lactose permease devoid of cysteine residues. Biochemistry. 1991 Oct 8;30(40):9595–9600. doi: 10.1021/bi00104a005. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES