Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 15;324(Pt 3):697–712. doi: 10.1042/bj3240697

The vacuolar H+-ATPase: a universal proton pump of eukaryotes.

M E Finbow 1, M A Harrison 1
PMCID: PMC1218484  PMID: 9210392

Abstract

The vacuolar H+-ATPase (V-ATPase) is a universal component of eukaryotic organisms. It is present in the membranes of many organelles, where its proton-pumping action creates the low intra-vacuolar pH found, for example, in lysosomes. In addition, there are a number of differentiated cell types that have V-ATPases on their surface that contribute to the physiological functions of these cells. The V-ATPase is a multi-subunit enzyme composed of a membrane sector and a cytosolic catalytic sector. It is related to the familiar FoF1 ATP synthase (F-ATPase), having the same basic architectural construction, and many of the subunits from the two display identity with one another. All the core subunits of the V-ATPase have now been identified and much is known about the assembly, regulation and pharmacology of the enzyme. Recent genetic analysis has shown the V-ATPase to be a vital component of higher eukaryotes. At least one of the subunits, i.e. subunit c (ductin), may have multifunctional roles in membrane transport, providing a possible pathway of communication between cells. The structure of the membrane sector is known in some detail, and it is possible to begin to suggest how proton pumping is coupled to ATP hydrolysis.

Full Text

The Full Text of this article is available as a PDF (530.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  2. Adachi I., Puopolo K., Marquez-Sterling N., Arai H., Forgac M. Dissociation, cross-linking, and glycosylation of the coated vesicle proton pump. J Biol Chem. 1990 Jan 15;265(2):967–973. [PubMed] [Google Scholar]
  3. Aggeler R., Capaldi R. A. Nucleotide-dependent movement of the epsilon subunit between alpha and beta subunits in the Escherichia coli F1F0-type ATPase. J Biol Chem. 1996 Jun 7;271(23):13888–13891. doi: 10.1074/jbc.271.23.13888. [DOI] [PubMed] [Google Scholar]
  4. Aggeler R., Haughton M. A., Capaldi R. A. Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences. J Biol Chem. 1995 Apr 21;270(16):9185–9191. doi: 10.1074/jbc.270.16.9185. [DOI] [PubMed] [Google Scholar]
  5. Andresson T., Sparkowski J., Goldstein D. J., Schlegel R. Vacuolar H(+)-ATPase mutants transform cells and define a binding site for the papillomavirus E5 oncoprotein. J Biol Chem. 1995 Mar 24;270(12):6830–6837. doi: 10.1074/jbc.270.12.6830. [DOI] [PubMed] [Google Scholar]
  6. Aniento F., Gu F., Parton R. G., Gruenberg J. An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J Cell Biol. 1996 Apr;133(1):29–41. doi: 10.1083/jcb.133.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Apperson M., Jensen R. E., Suda K., Witte C., Yaffe M. P. A yeast protein, homologous to the proteolipid of the chromaffin granule proton-ATPase, is important for cell growth. Biochem Biophys Res Commun. 1990 Apr 30;168(2):574–579. doi: 10.1016/0006-291x(90)92359-8. [DOI] [PubMed] [Google Scholar]
  8. Apps D. K., Percy J. M., Perez-Castineira J. R. Topography of a vacuolar-type H+-translocating ATPase: chromaffin-granule membrane ATPase I. Biochem J. 1989 Oct 1;263(1):81–88. doi: 10.1042/bj2630081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Arai H., Berne M., Forgac M. Inhibition of the coated vesicle proton pump and labeling of a 17,000-dalton polypeptide by N,N'-dicyclohexylcarbodiimide. J Biol Chem. 1987 Aug 15;262(23):11006–11011. [PubMed] [Google Scholar]
  10. Arai H., Berne M., Terres G., Terres H., Puopolo K., Forgac M. Subunit composition and ATP site labeling of the coated vesicle proton-translocating adenosinetriphosphatase. Biochemistry. 1987 Oct 20;26(21):6632–6638. doi: 10.1021/bi00395a011. [DOI] [PubMed] [Google Scholar]
  11. Arai H., Terres G., Pink S., Forgac M. Topography and subunit stoichiometry of the coated vesicle proton pump. J Biol Chem. 1988 Jun 25;263(18):8796–8802. [PubMed] [Google Scholar]
  12. Bauerle C., Ho M. N., Lindorfer M. A., Stevens T. H. The Saccharomyces cerevisiae VMA6 gene encodes the 36-kDa subunit of the vacuolar H(+)-ATPase membrane sector. J Biol Chem. 1993 Jun 15;268(17):12749–12757. [PubMed] [Google Scholar]
  13. Beltrán C., Kopecky J., Pan Y. C., Nelson H., Nelson N. Cloning and mutational analysis of the gene encoding subunit C of yeast vacuolar H(+)-ATPase. J Biol Chem. 1992 Jan 15;267(2):774–779. [PubMed] [Google Scholar]
  14. Beltrán C., Nelson N. The membrane sector of vacuolar H(+)-ATPase by itself is impermeable to protons. Acta Physiol Scand Suppl. 1992;607:41–47. [PubMed] [Google Scholar]
  15. Birman S., Meunier F. M., Lesbats B., Le Caer J. P., Rossier J., Israël M. A 15 kDa proteolipid found in mediatophore preparations from Torpedo electric organ presents high sequence homology with the bovine chromaffin granule protonophore. FEBS Lett. 1990 Feb 26;261(2):303–306. doi: 10.1016/0014-5793(90)80577-6. [DOI] [PubMed] [Google Scholar]
  16. Blair H. C., Teitelbaum S. L., Ghiselli R., Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989 Aug 25;245(4920):855–857. doi: 10.1126/science.2528207. [DOI] [PubMed] [Google Scholar]
  17. Bowman B. J., Allen R., Wechser M. A., Bowman E. J. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-2 encoding the 57-kDa polypeptide and comparison to vma-1. J Biol Chem. 1988 Oct 5;263(28):14002–14007. [PubMed] [Google Scholar]
  18. Bowman B. J., Bowman E. J. H+-ATPases from mitochondria, plasma membranes, and vacuoles of fungal cells. J Membr Biol. 1986;94(2):83–97. doi: 10.1007/BF01871190. [DOI] [PubMed] [Google Scholar]
  19. Bowman B. J., Dschida W. J., Harris T., Bowman E. J. The vacuolar ATPase of Neurospora crassa contains an F1-like structure. J Biol Chem. 1989 Sep 15;264(26):15606–15612. [PubMed] [Google Scholar]
  20. Bowman B. J., Vázquez-Laslop N., Bowman E. J. The vacuolar ATPase of Neurospora crassa. J Bioenerg Biomembr. 1992 Aug;24(4):361–370. doi: 10.1007/BF00762529. [DOI] [PubMed] [Google Scholar]
  21. Bowman B. J., Vázquez-Laslop N., Bowman E. J. The vacuolar ATPase of Neurospora crassa. J Bioenerg Biomembr. 1992 Aug;24(4):361–370. doi: 10.1007/BF00762529. [DOI] [PubMed] [Google Scholar]
  22. Bowman E. J. Comparison of the vacuolar membrane ATPase of Neurospora crassa with the mitochondrial and plasma membrane ATPases. J Biol Chem. 1983 Dec 25;258(24):15238–15244. [PubMed] [Google Scholar]
  23. Bowman E. J., Mandala S., Taiz L., Bowman B. J. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase from Zea mays. Proc Natl Acad Sci U S A. 1986 Jan;83(1):48–52. doi: 10.1073/pnas.83.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bowman E. J., Steinhardt A., Bowman B. J. Isolation of the vma-4 gene encoding the 26 kDa subunit of the Neurospora crassa vacuolar ATPase. Biochim Biophys Acta. 1995 Jul 6;1237(1):95–98. doi: 10.1016/0005-2736(95)00108-f. [DOI] [PubMed] [Google Scholar]
  26. Bowman E. J., Tenney K., Bowman B. J. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J Biol Chem. 1988 Oct 5;263(28):13994–14001. [PubMed] [Google Scholar]
  27. Brown D., Breton S. Mitochondria-rich, proton-secreting epithelial cells. J Exp Biol. 1996 Nov;199(Pt 11):2345–2358. doi: 10.1242/jeb.199.11.2345. [DOI] [PubMed] [Google Scholar]
  28. Brown D., Gluck S., Hartwig J. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J Cell Biol. 1987 Oct;105(4):1637–1648. doi: 10.1083/jcb.105.4.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Brown M. S., Anderson R. G., Goldstein J. L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
  30. Bruzzone R., Goodenough D. A. Gap junctions: ductin or connexins--which component is the critical one? Bioessays. 1995 Aug;17(8):744–745. doi: 10.1002/bies.950170812. [DOI] [PubMed] [Google Scholar]
  31. Capaldi R. A., Aggeler R., Turina P., Wilkens S. Coupling between catalytic sites and the proton channel in F1F0-type ATPases. Trends Biochem Sci. 1994 Jul;19(7):284–289. doi: 10.1016/0968-0004(94)90006-x. [DOI] [PubMed] [Google Scholar]
  32. Caspar D. L., Goodenough D. A., Makowski L., Phillips W. C. Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. J Cell Biol. 1977 Aug;74(2):605–628. doi: 10.1083/jcb.74.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Chatterjee D., Chakraborty M., Leit M., Neff L., Jamsa-Kellokumpu S., Fuchs R., Baron R. Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton pump from other vacuolar H+ ATPases. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6257–6261. doi: 10.1073/pnas.89.14.6257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Chatterjee D., Neff L., Chakraborty M., Fabricant C., Baron R. Sensitivity to nitrate and other oxyanions further distinguishes the vanadate-sensitive osteoclast proton pump from other vacuolar H(+)-ATPases. Biochemistry. 1993 Mar 23;32(11):2808–2812. doi: 10.1021/bi00062a011. [DOI] [PubMed] [Google Scholar]
  35. Cidon S., Nelson N. Purification of N-ethylmaleimide-sensitive ATPase from chromaffin granule membranes. J Biol Chem. 1986 Jul 15;261(20):9222–9227. [PubMed] [Google Scholar]
  36. Clague M. J., Urbé S., Aniento F., Gruenberg J. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J Biol Chem. 1994 Jan 7;269(1):21–24. [PubMed] [Google Scholar]
  37. Collinson I. R., Runswick M. J., Buchanan S. K., Fearnley I. M., Skehel J. M., van Raaij M. J., Griffiths D. E., Walker J. E. Fo membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition, and reconstitution with F1-ATPase. Biochemistry. 1994 Jun 28;33(25):7971–7978. doi: 10.1021/bi00191a026. [DOI] [PubMed] [Google Scholar]
  38. Crider B. P., Xie X. S., Stone D. K. Bafilomycin inhibits proton flow through the H+ channel of vacuolar proton pumps. J Biol Chem. 1994 Jul 1;269(26):17379–17381. [PubMed] [Google Scholar]
  39. David P., Baron R. The catalytic cycle of the vacuolar H(+)-ATPase. Comparison of proton transport in kidney- and osteoclast-derived vesicles. J Biol Chem. 1994 Dec 2;269(48):30158–30163. [PubMed] [Google Scholar]
  40. Davies J. M., Hunt I., Sanders D. Vacuolar H(+)-pumping ATPase variable transport coupling ratio controlled by pH. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8547–8551. doi: 10.1073/pnas.91.18.8547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Davies S. A., Goodwin S. F., Kelly D. C., Wang Z., Sözen M. A., Kaiser K., Dow J. A. Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J Biol Chem. 1996 Nov 29;271(48):30677–30684. doi: 10.1074/jbc.271.48.30677. [DOI] [PubMed] [Google Scholar]
  42. Dmitriev O. Y., Altendorf K., Fillingame R. H. Reconstitution of the Fo complex of Escherichia coli ATP synthase from isolated subunits. Varying the number of essential carboxylates by co-incorporation of wild-type and mutant subunit c after purification in organic solvent. Eur J Biochem. 1995 Oct 15;233(2):478–483. doi: 10.1111/j.1432-1033.1995.478_2.x. [DOI] [PubMed] [Google Scholar]
  43. Doherty R. D., Kane P. M. Partial assembly of the yeast vacuolar H(+)-ATPase in mutants lacking one subunit of the enzyme. J Biol Chem. 1993 Aug 5;268(22):16845–16851. [PubMed] [Google Scholar]
  44. Dow J. A., Davies S. A., Guo Y., Graham S., Finbow M. E., Kaiser K. Molecular genetic analysis of V-ATPase function in Drosophila melanogaster. J Exp Biol. 1997 Jan;200(Pt 2):237–245. doi: 10.1242/jeb.200.2.237. [DOI] [PubMed] [Google Scholar]
  45. Dow J. A., Goodwin S. F., Kaiser K. Analysis of the gene encoding a 16-kDa proteolipid subunit of the vacuolar H(+)-ATPase from Manduca sexta midgut and tubules. Gene. 1992 Dec 15;122(2):355–360. doi: 10.1016/0378-1119(92)90226-f. [DOI] [PubMed] [Google Scholar]
  46. Dow JA. pH GRADIENTS IN LEPIDOPTERAN MIDGUT. J Exp Biol. 1992 Nov 1;172(Pt 1):355–375. doi: 10.1242/jeb.172.1.355. [DOI] [PubMed] [Google Scholar]
  47. Dröse S., Bindseil K. U., Bowman E. J., Siebers A., Zeeck A., Altendorf K. Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry. 1993 Apr 20;32(15):3902–3906. doi: 10.1021/bi00066a008. [DOI] [PubMed] [Google Scholar]
  48. Dschida W. J., Bowman B. J. The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation. J Biol Chem. 1995 Jan 27;270(4):1557–1563. doi: 10.1074/jbc.270.4.1557. [DOI] [PubMed] [Google Scholar]
  49. Duncan T. M., Bulygin V. V., Zhou Y., Hutcheon M. L., Cross R. L. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10964–10968. doi: 10.1073/pnas.92.24.10964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Dunlop J., Jones P. C., Finbow M. E. Membrane insertion and assembly of ductin: a polytopic channel with dual orientations. EMBO J. 1995 Aug 1;14(15):3609–3616. doi: 10.1002/j.1460-2075.1995.tb00030.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Faccini A. M., Cairney M., Ashrafi G. H., Finbow M. E., Campo M. S., Pitts J. D. The bovine papillomavirus type 4 E8 protein binds to ductin and causes loss of gap junctional intercellular communication in primary fibroblasts. J Virol. 1996 Dec;70(12):9041–9045. doi: 10.1128/jvi.70.12.9041-9045.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Falk-Vairant J., Corrèges P., Eder-Colli L., Salem N., Roulet E., Bloc A., Meunier F., Lesbats B., Loctin F., Synguelakis M. Quantal acetylcholine release induced by mediatophore transfection. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5203–5207. doi: 10.1073/pnas.93.11.5203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Feng Y., Forgac M. A novel mechanism for regulation of vacuolar acidification. J Biol Chem. 1992 Oct 5;267(28):19769–19772. [PubMed] [Google Scholar]
  54. Feng Y., Forgac M. Cysteine 254 of the 73-kDa A subunit is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by sulfhydryl reagents. J Biol Chem. 1992 Mar 25;267(9):5817–5822. [PubMed] [Google Scholar]
  55. Feng Y., Forgac M. Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem. 1994 May 6;269(18):13224–13230. [PubMed] [Google Scholar]
  56. Feng Z., Aggeler R., Haughton M. A., Capaldi R. A. Conformational changes in the Escherichia coli ATP synthase (ECF1F0) monitored by nucleotide-dependent differences in the reactivity of Cys-87 of the gamma subunit in the mutant betaGlu-381 --> Ala. J Biol Chem. 1996 Jul 26;271(30):17986–17989. doi: 10.1074/jbc.271.30.17986. [DOI] [PubMed] [Google Scholar]
  57. Fillingame R. H. Membrane sectors of F- and V-type H+-transporting ATPases. Curr Opin Struct Biol. 1996 Aug;6(4):491–498. doi: 10.1016/s0959-440x(96)80114-x. [DOI] [PubMed] [Google Scholar]
  58. Fillingame R. H., Mosher M. E., Negrin R. S., Peters L. K. H+-ATPase of Escherichia coli uncB402 mutation leads to loss of chi subunit of subunit of F0 sector. J Biol Chem. 1983 Jan 10;258(1):604–609. [PubMed] [Google Scholar]
  59. Finbow M. E., Buultjens T. E., Lane N. J., Shuttleworth J., Pitts J. D. Isolation and characterisation of arthropod gap junctions. EMBO J. 1984 Oct;3(10):2271–2278. doi: 10.1002/j.1460-2075.1984.tb02125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Finbow M. E., Eliopoulos E. E., Jackson P. J., Keen J. N., Meagher L., Thompson P., Jones P., Findlay J. B. Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H(+)-ATPase. Protein Eng. 1992 Jan;5(1):7–15. doi: 10.1093/protein/5.1.7. [DOI] [PubMed] [Google Scholar]
  61. Finbow M. E., Goodwin S. F., Meagher L., Lane N. J., Keen J., Findlay J. B., Kaiser K. Evidence that the 16 kDa proteolipid (subunit c) of the vacuolar H(+)-ATPase and ductin from gap junctions are the same polypeptide in Drosophila and Manduca: molecular cloning of the Vha16k gene from Drosophila. J Cell Sci. 1994 Jul;107(Pt 7):1817–1824. doi: 10.1242/jcs.107.7.1817. [DOI] [PubMed] [Google Scholar]
  62. Finbow M. E., Harrison M., Jones P. Ductin--a proton pump component, a gap junction channel and a neurotransmitter release channel. Bioessays. 1995 Mar;17(3):247–255. doi: 10.1002/bies.950170311. [DOI] [PubMed] [Google Scholar]
  63. Finbow M. E., John S., Kam E., Apps D. K., Pitts J. D. Disposition and orientation of ductin (DCCD-reactive vacuolar H(+)-ATPase subunit) in mammalian membrane complexes. Exp Cell Res. 1993 Aug;207(2):261–270. doi: 10.1006/excr.1993.1192. [DOI] [PubMed] [Google Scholar]
  64. Finbow M. E., Pitts J. D., Goldstein D. J., Schlegel R., Findlay J. B. The E5 oncoprotein target: a 16-kDa channel-forming protein with diverse functions. Mol Carcinog. 1991;4(6):441–444. doi: 10.1002/mc.2940040605. [DOI] [PubMed] [Google Scholar]
  65. Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev. 1989 Jul;69(3):765–796. doi: 10.1152/physrev.1989.69.3.765. [DOI] [PubMed] [Google Scholar]
  66. Foury F. The 31-kDa polypeptide is an essential subunit of the vacuolar ATPase in Saccharomyces cerevisiae. J Biol Chem. 1990 Oct 25;265(30):18554–18560. [PubMed] [Google Scholar]
  67. Furuchi T., Aikawa K., Arai H., Inoue K. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, blocks lysosomal cholesterol trafficking in macrophages. J Biol Chem. 1993 Dec 25;268(36):27345–27348. [PubMed] [Google Scholar]
  68. Galli T., McPherson P. S., De Camilli P. The V0 sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a Triton X-100-resistant, freeze-thawing sensitive, complex. J Biol Chem. 1996 Jan 26;271(4):2193–2198. doi: 10.1074/jbc.271.4.2193. [DOI] [PubMed] [Google Scholar]
  69. Gillespie G. A., Somlo S., Germino G. G., Weinstat-Saslow D., Reeders S. T. CpG island in the region of an autosomal dominant polycystic kidney disease locus defines the 5' end of a gene encoding a putative proton channel. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4289–4293. doi: 10.1073/pnas.88.10.4289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Girvin M. E., Fillingame R. H. Hairpin folding of subunit c of F1Fo ATP synthase: 1H distance measurements to nitroxide-derivatized aspartyl-61. Biochemistry. 1994 Jan 25;33(3):665–674. doi: 10.1021/bi00169a006. [DOI] [PubMed] [Google Scholar]
  71. Girvin M. E., Fillingame R. H. Helical structure and folding of subunit c of F1F0 ATP synthase: 1H NMR resonance assignments and NOE analysis. Biochemistry. 1993 Nov 16;32(45):12167–12177. doi: 10.1021/bi00096a029. [DOI] [PubMed] [Google Scholar]
  72. Gluck S., Caldwell J. Immunoaffinity purification and characterization of vacuolar H+ATPase from bovine kidney. J Biol Chem. 1987 Nov 15;262(32):15780–15789. [PubMed] [Google Scholar]
  73. Gogarten J. P., Kibak H., Dittrich P., Taiz L., Bowman E. J., Bowman B. J., Manolson M. F., Poole R. J., Date T., Oshima T. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6661–6665. doi: 10.1073/pnas.86.17.6661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Goldstein D. J., Finbow M. E., Andresson T., McLean P., Smith K., Bubb V., Schlegel R. Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H(+)-ATPases. Nature. 1991 Jul 25;352(6333):347–349. doi: 10.1038/352347a0. [DOI] [PubMed] [Google Scholar]
  75. Goldstein D. J., Toyama R., Dhar R., Schlegel R. The BPV-1 E5 oncoprotein expressed in Schizosaccharomyces pombe exhibits normal biochemical properties and binds to the endogenous 16-kDa component of the vacuolar proton-ATPase. Virology. 1992 Oct;190(2):889–893. doi: 10.1016/0042-6822(92)90932-f. [DOI] [PubMed] [Google Scholar]
  76. Graham L. A., Hill K. J., Stevens T. H. VMA7 encodes a novel 14-kDa subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase complex. J Biol Chem. 1994 Oct 21;269(42):25974–25977. [PubMed] [Google Scholar]
  77. Graham L. A., Hill K. J., Stevens T. H. VMA8 encodes a 32-kDa V1 subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase required for function and assembly of the enzyme complex. J Biol Chem. 1995 Jun 23;270(25):15037–15044. doi: 10.1074/jbc.270.25.15037. [DOI] [PubMed] [Google Scholar]
  78. Gräf R., Harvey W. R., Wieczorek H. Purification and properties of a cytosolic V1-ATPase. J Biol Chem. 1996 Aug 23;271(34):20908–20913. doi: 10.1074/jbc.271.34.20908. [DOI] [PubMed] [Google Scholar]
  79. Gräf R., Lepier A., Harvey W. R., Wieczorek H. A novel 14-kDa V-ATPase subunit in the tobacco hornworm midgut. J Biol Chem. 1994 Feb 4;269(5):3767–3774. [PubMed] [Google Scholar]
  80. Grønberg M., Flatmark T. Inhibition of the H+-ATPase in bovine adrenal chromaffin granule ghosts by diethylstilbestrol. Evidence for a tight coupling between ATP hydrolysis and proton translocation. FEBS Lett. 1988 Feb 29;229(1):40–44. doi: 10.1016/0014-5793(88)80793-2. [DOI] [PubMed] [Google Scholar]
  81. Guo Y., Kaiser K., Wieczorek H., Dow J. A. The Drosophila melanogaster gene vha14 encoding a 14-kDa F-subunit of the vacuolar ATPase. Gene. 1996 Jun 26;172(2):239–243. doi: 10.1016/0378-1119(96)00057-1. [DOI] [PubMed] [Google Scholar]
  82. Guo Y., Wang Z., Carter A., Kaiser K., Dow J. A. Characterisation of vha26, the Drosophila gene for a 26 kDa E-subunit of the vacuolar ATPase. Biochim Biophys Acta. 1996 Aug 14;1283(1):4–9. doi: 10.1016/0005-2736(96)00103-4. [DOI] [PubMed] [Google Scholar]
  83. Gupta B. L., Berridge M. J. A coat of repeating subunits on the cytoplasmic surface of the plasma membrane in the rectal papillae of the blowfly, Calliphora erythrocephala (Meig.), studied in situ by electron microscopy. J Cell Biol. 1966 May;29(2):376–382. doi: 10.1083/jcb.29.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Haass C., Capell A., Citron M., Teplow D. B., Selkoe D. J. The vacuolar H(+)-ATPase inhibitor bafilomycin A1 differentially affects proteolytic processing of mutant and wild-type beta-amyloid precursor protein. J Biol Chem. 1995 Mar 17;270(11):6186–6192. doi: 10.1074/jbc.270.11.6186. [DOI] [PubMed] [Google Scholar]
  85. Hanada H., Hasebe M., Moriyama Y., Maeda M., Futai M. Molecular cloning of cDNA encoding the 16 KDa subunit of vacuolar H(+)-ATPase from mouse cerebellum. Biochem Biophys Res Commun. 1991 May 15;176(3):1062–1067. doi: 10.1016/0006-291x(91)90391-j. [DOI] [PubMed] [Google Scholar]
  86. Hanada H., Moriyama Y., Maeda M., Futai M. Kinetic studies of chromaffin granule H+-ATPase and effects of bafilomycin A1. Biochem Biophys Res Commun. 1990 Jul 31;170(2):873–878. doi: 10.1016/0006-291x(90)92172-v. [DOI] [PubMed] [Google Scholar]
  87. Harrison M. A., Jones P. C., Kim Y. I., Finbow M. E., Findlay J. B. Functional properties of a hybrid vacuolar H(+)-ATPase in Saccharomyces cells expressing the Nephrops 16-kDa proteolipid. Eur J Biochem. 1994 Apr 1;221(1):111–120. doi: 10.1111/j.1432-1033.1994.tb18719.x. [DOI] [PubMed] [Google Scholar]
  88. Hasebe M., Hanada H., Moriyama Y., Maeda M., Futai M. Vacuolar type H(+)-ATPase genes: presence of four genes including pseudogenes for the 16-kDa proteolipid subunit in the human genome. Biochem Biophys Res Commun. 1992 Mar 16;183(2):856–863. doi: 10.1016/0006-291x(92)90562-y. [DOI] [PubMed] [Google Scholar]
  89. Hasenfratz M. P., Tsou C. L., Wilkins T. A. Expression of two related vacuolar H(+)-ATPase 16-kilodalton proteolipid genes is differentially regulated in a tissue-specific manner. Plant Physiol. 1995 Aug;108(4):1395–1404. doi: 10.1104/pp.108.4.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Hassinen I. E., Vuokila P. T. Reaction of dicyclohexylcarbodiimide with mitochondrial proteins. Biochim Biophys Acta. 1993 Sep 13;1144(2):107–124. doi: 10.1016/0005-2728(93)90164-b. [DOI] [PubMed] [Google Scholar]
  91. Haughton M. A., Capaldi R. A. Asymmetry of Escherichia coli F1-ATPase as a function of the interaction of alpha-beta subunit pairs with the gamma and epsilon subunits. J Biol Chem. 1995 Sep 1;270(35):20568–20574. doi: 10.1074/jbc.270.35.20568. [DOI] [PubMed] [Google Scholar]
  92. Heming T. A., Traber D. L., Hinder F., Bidani A. Effects of bafilomycin A1 on cytosolic pH of sheep alveolar and peritoneal macrophages: evaluation of the pH-regulatory role of plasma membrane V-ATPases. J Exp Biol. 1995 Aug;198(Pt 8):1711–1715. doi: 10.1242/jeb.198.8.1711. [DOI] [PubMed] [Google Scholar]
  93. Hill K. J., Stevens T. H. Vma21p is a yeast membrane protein retained in the endoplasmic reticulum by a di-lysine motif and is required for the assembly of the vacuolar H(+)-ATPase complex. Mol Biol Cell. 1994 Sep;5(9):1039–1050. doi: 10.1091/mbc.5.9.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Hirata R., Graham L. A., Takatsuki A., Stevens T. H., Anraku Y. VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J Biol Chem. 1997 Feb 21;272(8):4795–4803. doi: 10.1074/jbc.272.8.4795. [DOI] [PubMed] [Google Scholar]
  95. Hirata R., Ohsumi Y., Anraku Y. Functional molecular masses of vacuolar membrane H+-ATPase from Saccharomyces cerevisiae as studied by radiation inactivation analysis. FEBS Lett. 1989 Feb 27;244(2):397–401. doi: 10.1016/0014-5793(89)80571-x. [DOI] [PubMed] [Google Scholar]
  96. Hirata R., Ohsumk Y., Nakano A., Kawasaki H., Suzuki K., Anraku Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Apr 25;265(12):6726–6733. [PubMed] [Google Scholar]
  97. Hirata R., Umemoto N., Ho M. N., Ohya Y., Stevens T. H., Anraku Y. VMA12 is essential for assembly of the vacuolar H(+)-ATPase subunits onto the vacuolar membrane in Saccharomyces cerevisiae. J Biol Chem. 1993 Jan 15;268(2):961–967. [PubMed] [Google Scholar]
  98. Hirsch S., Strauss A., Masood K., Lee S., Sukhatme V., Gluck S. Isolation and sequence of a cDNA clone encoding the 31-kDa subunit of bovine kidney vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1988 May;85(9):3004–3008. doi: 10.1073/pnas.85.9.3004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Ho M. N., Hill K. J., Lindorfer M. A., Stevens T. H. Isolation of vacuolar membrane H(+)-ATPase-deficient yeast mutants; the VMA5 and VMA4 genes are essential for assembly and activity of the vacuolar H(+)-ATPase. J Biol Chem. 1993 Jan 5;268(1):221–227. [PubMed] [Google Scholar]
  100. Ho M. N., Hirata R., Umemoto N., Ohya Y., Takatsuki A., Stevens T. H., Anraku Y. VMA13 encodes a 54-kDa vacuolar H(+)-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. J Biol Chem. 1993 Aug 25;268(24):18286–18292. [PubMed] [Google Scholar]
  101. Holzenburg A., Jones P. C., Franklin T., Pali T., Heimburg T., Marsh D., Findlay J. B., Finbow M. E. Evidence for a common structure for a class of membrane channels. Eur J Biochem. 1993 Apr 1;213(1):21–30. doi: 10.1111/j.1432-1033.1993.tb17730.x. [DOI] [PubMed] [Google Scholar]
  102. Hughes G., Harrison M. A., Kim Y. I., Griffiths D. E., Finbow M. E., Findlay J. B. Interaction of dibutyltin-3-hydroxyflavone bromide with the 16 kDa proteolipid indicates the disposition of proton translocation sites of the vacuolar ATPase. Biochem J. 1996 Jul 15;317(Pt 2):425–431. doi: 10.1042/bj3170425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Hunt I. E., Sanders D. The Kinetics of N-Ethylmaleimide Inhibition of a Vacuolar H+-ATPase and Determination of Nucleotide Dissociation Constants. Plant Physiol. 1996 Jan;110(1):97–103. doi: 10.1104/pp.110.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Ihara K, Abe T, Sugimura KI, Mukohata Y. HALOBACTERIAL A-ATP SYNTHASE IN RELATION TO V-ATPase. J Exp Biol. 1992 Nov 1;172(Pt 1):475–485. doi: 10.1242/jeb.172.1.475. [DOI] [PubMed] [Google Scholar]
  105. Iwamoto A., Orita-Saita Y., Maeda M., Futai M. N-ethylmaleimide-sensitive mutant (beta Val-153-->Cys) Escherichia coli F1-ATPase: cross-linking of the mutant beta subunit with the alpha subunit. FEBS Lett. 1994 Sep 26;352(2):243–246. doi: 10.1016/0014-5793(94)00963-5. [DOI] [PubMed] [Google Scholar]
  106. Johnson L. S., Dunn K. W., Pytowski B., McGraw T. E. Endosome acidification and receptor trafficking: bafilomycin A1 slows receptor externalization by a mechanism involving the receptor's internalization motif. Mol Biol Cell. 1993 Dec;4(12):1251–1266. doi: 10.1091/mbc.4.12.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Jones P. C., Harrison M. A., Kim Y. I., Finbow M. E., Findlay J. B. The first putative transmembrane helix of the 16 kDa proteolipid lines a pore in the Vo sector of the vacuolar H(+)-ATPase. Biochem J. 1995 Dec 15;312(Pt 3):739–747. doi: 10.1042/bj3120739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Kaestner K. H., Randall S. K., Sze H. N,N'-dicyclohexylcarbodiimide-binding proteolipid of the vacuolar H+-ATPase from oat roots. J Biol Chem. 1988 Jan 25;263(3):1282–1287. [PubMed] [Google Scholar]
  109. Kakinuma Y., Igarashi K. Some features of the Streptococcus faecalis Na(+)-ATPase resemble those of the vacuolar-type ATPases. FEBS Lett. 1990 Oct 1;271(1-2):97–101. doi: 10.1016/0014-5793(90)80381-r. [DOI] [PubMed] [Google Scholar]
  110. Kakinuma Y., Ohsumi Y., Anraku Y. Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of SAccharomyces cerevisiae. J Biol Chem. 1981 Nov 10;256(21):10859–10863. [PubMed] [Google Scholar]
  111. Kane P. M. Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J Biol Chem. 1995 Jul 14;270(28):17025–17032. [PubMed] [Google Scholar]
  112. Kane P. M., Kuehn M. C., Howald-Stevenson I., Stevens T. H. Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H(+)-ATPase. J Biol Chem. 1992 Jan 5;267(1):447–454. [PubMed] [Google Scholar]
  113. Kane P. M., Stevens T. H. Subunit composition, biosynthesis, and assembly of the yeast vacuolar proton-translocating ATPase. J Bioenerg Biomembr. 1992 Aug;24(4):383–393. doi: 10.1007/BF00762531. [DOI] [PubMed] [Google Scholar]
  114. Kane P. M., Yamashiro C. T., Stevens T. H. Biochemical characterization of the yeast vacuolar H(+)-ATPase. J Biol Chem. 1989 Nov 15;264(32):19236–19244. [PubMed] [Google Scholar]
  115. Kane P. M., Yamashiro C. T., Wolczyk D. F., Neff N., Goebl M., Stevens T. H. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science. 1990 Nov 2;250(4981):651–657. doi: 10.1126/science.2146742. [DOI] [PubMed] [Google Scholar]
  116. Kibak H., Van Eeckhout D., Cutler T., Taiz S. L., Taiz L. Sulfite both stimulates and inhibits the yeast vacuolar H(+)-ATPase. J Biol Chem. 1993 Nov 5;268(31):23325–23333. [PubMed] [Google Scholar]
  117. Kinoshita K., Hidaka H., Ohkuma S. Induction of phagocytic activity of M1 cells by an inhibitor of vacuolar H+-ATPase, bafilomycin A1. FEBS Lett. 1994 Jan 17;337(3):221–225. doi: 10.1016/0014-5793(94)80195-9. [DOI] [PubMed] [Google Scholar]
  118. Lai S. P., Randall S. K., Sze H. Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots. J Biol Chem. 1988 Nov 15;263(32):16731–16737. [PubMed] [Google Scholar]
  119. Lai S. P., Watson J. C., Hansen J. N., Sze H. Molecular cloning and sequencing of cDNAs encoding the proteolipid subunit of the vacuolar H(+)-ATPase from a higher plant. J Biol Chem. 1991 Aug 25;266(24):16078–16084. [PubMed] [Google Scholar]
  120. Laubinger W., Deckers-Hebestreit G., Altendorf K., Dimroth P. A hybrid adenosinetriphosphatase composed of F1 of Escherichia coli and F0 of Propionigenium modestum is a functional sodium ion pump. Biochemistry. 1990 Jun 12;29(23):5458–5463. doi: 10.1021/bi00475a008. [DOI] [PubMed] [Google Scholar]
  121. Leng X. H., Manolson M. F., Liu Q., Forgac M. Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase. J Biol Chem. 1996 Sep 13;271(37):22487–22493. doi: 10.1074/jbc.271.37.22487. [DOI] [PubMed] [Google Scholar]
  122. Lepier A., Azuma M., Harvey W. R., Wieczorek H. K+/H+ antiport in the tobacco hornworm midgut: the K(+)-transporting component of the K+ pump. J Exp Biol. 1994 Nov;196:361–373. doi: 10.1242/jeb.196.1.361. [DOI] [PubMed] [Google Scholar]
  123. Lepier A., Gräf R., Azuma M., Merzendorfer H., Harvey W. R., Wieczorek H. The peripheral complex of the tobacco hornworm V-ATPase contains a novel 13-kDa subunit G. J Biol Chem. 1996 Apr 5;271(14):8502–8508. doi: 10.1074/jbc.271.14.8502. [DOI] [PubMed] [Google Scholar]
  124. Li C. Y., Watkins J. A., Glass J. The H(+)-ATPase from reticulocyte endosomes reconstituted into liposomes acts as an iron transporter. J Biol Chem. 1994 Apr 8;269(14):10242–10246. [PubMed] [Google Scholar]
  125. Li Y. P., Chen W., Stashenko P. Molecular cloning and characterization of a putative novel human osteoclast-specific 116-kDa vacuolar proton pump subunit. Biochem Biophys Res Commun. 1996 Jan 26;218(3):813–821. doi: 10.1006/bbrc.1996.0145. [DOI] [PubMed] [Google Scholar]
  126. Liu Q., Kane P. M., Newman P. R., Forgac M. Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p). J Biol Chem. 1996 Jan 26;271(4):2018–2022. doi: 10.1074/jbc.271.4.2018. [DOI] [PubMed] [Google Scholar]
  127. Liu T., Clarke M. The vacuolar proton pump of Dictyostelium discoideum: molecular cloning and analysis of the 100 kDa subunit. J Cell Sci. 1996 May;109(Pt 5):1041–1051. doi: 10.1242/jcs.109.5.1041. [DOI] [PubMed] [Google Scholar]
  128. Löw R., Rockel B., Kirsch M., Ratajczak R., Hörtensteiner S., Martinoia E., Lüttge U., Rausch T. Early salt stress effects on the differential expression of vacuolar H(+)-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol. 1996 Jan;110(1):259–265. doi: 10.1104/pp.110.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Manabe T., Yoshimori T., Henomatsu N., Tashiro Y. Inhibitors of vacuolar-type H(+)-ATPase suppresses proliferation of cultured cells. J Cell Physiol. 1993 Dec;157(3):445–452. doi: 10.1002/jcp.1041570303. [DOI] [PubMed] [Google Scholar]
  130. Mandala S., Taiz L. Characterization of the subunit structure of the maize tonoplast ATPase. Immunological and inhibitor binding studies. J Biol Chem. 1986 Sep 25;261(27):12850–12855. [PubMed] [Google Scholar]
  131. Mandel M., Moriyama Y., Hulmes J. D., Pan Y. C., Nelson H., Nelson N. cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5521–5524. doi: 10.1073/pnas.85.15.5521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Manolson M. F., Ouellette B. F., Filion M., Poole R. J. cDNA sequence and homologies of the "57-kDa" nucleotide-binding subunit of the vacuolar ATPase from Arabidopsis. J Biol Chem. 1988 Dec 5;263(34):17987–17994. [PubMed] [Google Scholar]
  133. Manolson M. F., Proteau D., Preston R. A., Stenbit A., Roberts B. T., Hoyt M. A., Preuss D., Mulholland J., Botstein D., Jones E. W. The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase. J Biol Chem. 1992 Jul 15;267(20):14294–14303. [PubMed] [Google Scholar]
  134. Manolson M. F., Rea P. A., Poole R. J. Identification of 3-O-(4-benzoyl)benzoyladenosine 5'-triphosphate- and N,N'-dicyclohexylcarbodiimide-binding subunits of a higher plant H+-translocating tonoplast ATPase. J Biol Chem. 1985 Oct 5;260(22):12273–12279. [PubMed] [Google Scholar]
  135. Manolson M. F., Wu B., Proteau D., Taillon B. E., Roberts B. T., Hoyt M. A., Jones E. W. STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem. 1994 May 13;269(19):14064–14074. [PubMed] [Google Scholar]
  136. Mellman I. The importance of being acid: the role of acidification in intracellular membrane traffic. J Exp Biol. 1992 Nov;172:39–45. doi: 10.1242/jeb.172.1.39. [DOI] [PubMed] [Google Scholar]
  137. Moriyama Y., Nelson N. Cold inactivation of vacuolar proton-ATPases. J Biol Chem. 1989 Feb 25;264(6):3577–3582. [PubMed] [Google Scholar]
  138. Moriyama Y., Nelson N. Nucleotide binding sites and chemical modification of the chromaffin granule proton ATPase. J Biol Chem. 1987 Oct 25;262(30):14723–14729. [PubMed] [Google Scholar]
  139. Muroi M., Shiragami N., Takatsuki A. Destruxin B, a specific and readily reversible inhibitor of vacuolar-type H(+)-translocating ATPase. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1358–1365. doi: 10.1006/bbrc.1994.2815. [DOI] [PubMed] [Google Scholar]
  140. Myers M., Forgac M. Assembly of the peripheral domain of the bovine vacuolar H(+)-adenosine triphosphatase. J Cell Physiol. 1993 Jul;156(1):35–42. doi: 10.1002/jcp.1041560106. [DOI] [PubMed] [Google Scholar]
  141. Müller M., Irkens-Kiesecker U., Rubinstein B., Taiz L. On the mechanism of hyperacidification in lemon. Comparison of the vacuolar H(+)-ATPase activities of fruits and epicotyls. J Biol Chem. 1996 Jan 26;271(4):1916–1924. doi: 10.1074/jbc.271.4.1916. [DOI] [PubMed] [Google Scholar]
  142. Nakamoto R. K. Mechanisms of active transport in the FOF1 ATP synthase. J Membr Biol. 1996 May;151(2):101–111. doi: 10.1007/s002329900061. [DOI] [PubMed] [Google Scholar]
  143. Nanda A., Gukovskaya A., Tseng J., Grinstein S. Activation of vacuolar-type proton pumps by protein kinase C. Role in neutrophil pH regulation. J Biol Chem. 1992 Nov 15;267(32):22740–22746. [PubMed] [Google Scholar]
  144. Nałecz M. J., Casey R. P., Azzi A. Use of N,N'-dicyclohexylcarbodiimide to study membrane-bound enzymes. Methods Enzymol. 1986;125:86–108. doi: 10.1016/s0076-6879(86)25009-0. [DOI] [PubMed] [Google Scholar]
  145. Nelson H., Mandiyan S., Nelson N. A bovine cDNA and a yeast gene (VMA8) encoding the subunit D of the vacuolar H(+)-ATPase. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):497–501. doi: 10.1073/pnas.92.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Nelson H., Mandiyan S., Nelson N. A conserved gene encoding the 57-kDa subunit of the yeast vacuolar H+-ATPase. J Biol Chem. 1989 Jan 25;264(3):1775–1778. [PubMed] [Google Scholar]
  147. Nelson H., Mandiyan S., Nelson N. The Saccharomyces cerevisiae VMA7 gene encodes a 14-kDa subunit of the vacuolar H(+)-ATPase catalytic sector. J Biol Chem. 1994 Sep 30;269(39):24150–24155. [PubMed] [Google Scholar]
  148. Nelson H., Mandiyan S., Noumi T., Moriyama Y., Miedel M. C., Nelson N. Molecular cloning of cDNA encoding the C subunit of H(+)-ATPase from bovine chromaffin granules. J Biol Chem. 1990 Nov 25;265(33):20390–20393. [PubMed] [Google Scholar]
  149. Nelson H., Nelson N. Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci U S A. 1990 May;87(9):3503–3507. doi: 10.1073/pnas.87.9.3503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Nelson H., Nelson N. The progenitor of ATP synthases was closely related to the current vacuolar H+-ATPase. FEBS Lett. 1989 Apr 10;247(1):147–153. doi: 10.1016/0014-5793(89)81259-1. [DOI] [PubMed] [Google Scholar]
  151. Nelson N. Energizing porters by proton-motive force. J Exp Biol. 1994 Nov;196:7–13. doi: 10.1242/jeb.196.1.7. [DOI] [PubMed] [Google Scholar]
  152. Nelson N. Organellar proton-ATPases. Curr Opin Cell Biol. 1992 Aug;4(4):654–660. doi: 10.1016/0955-0674(92)90086-r. [DOI] [PubMed] [Google Scholar]
  153. Nelson N., Taiz L. The evolution of H+-ATPases. Trends Biochem Sci. 1989 Mar;14(3):113–116. doi: 10.1016/0968-0004(89)90134-5. [DOI] [PubMed] [Google Scholar]
  154. Nishihara T., Akifusa S., Koseki T., Kato S., Muro M., Hanada N. Specific inhibitors of vacuolar type H(+)-ATPases induce apoptotic cell death. Biochem Biophys Res Commun. 1995 Jul 6;212(1):255–262. doi: 10.1006/bbrc.1995.1964. [DOI] [PubMed] [Google Scholar]
  155. Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
  156. Noumi T., Beltrán C., Nelson H., Nelson N. Mutational analysis of yeast vacuolar H(+)-ATPase. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1938–1942. doi: 10.1073/pnas.88.5.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Oelze I., Kartenbeck J., Crusius K., Alonso A. Human papillomavirus type 16 E5 protein affects cell-cell communication in an epithelial cell line. J Virol. 1995 Jul;69(7):4489–4494. doi: 10.1128/jvi.69.7.4489-4494.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Ohya Y., Umemoto N., Tanida I., Ohta A., Iida H., Anraku Y. Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity. J Biol Chem. 1991 Jul 25;266(21):13971–13977. [PubMed] [Google Scholar]
  159. Papini E., de Bernard M., Bugnoli M., Milia E., Rappuoli R., Montecucco C. Cell vacuolization induced by Helicobacter pylori: inhibition by bafilomycins A1, B1, C1 and D. FEMS Microbiol Lett. 1993 Oct 15;113(2):155–159. doi: 10.1111/j.1574-6968.1993.tb06507.x. [DOI] [PubMed] [Google Scholar]
  160. Parra K. J., Kane P. M. Wild-type and mutant vacuolar membranes support pH-dependent reassembly of the yeast vacuolar H+-ATPase in vitro. J Biol Chem. 1996 Aug 9;271(32):19592–19598. doi: 10.1074/jbc.271.32.19592. [DOI] [PubMed] [Google Scholar]
  161. Parry R. V., Turner J. C., Rea P. A. High purity preparations of higher plant vacuolar H+-ATPase reveal additional subunits. Revised subunit composition. J Biol Chem. 1989 Nov 25;264(33):20025–20032. [PubMed] [Google Scholar]
  162. Peng S. B. Nucleotide labeling and reconstitution of the recombinant 58-kDa subunit of the vacuolar proton-translocating ATPase. J Biol Chem. 1995 Jul 14;270(28):16926–16931. [PubMed] [Google Scholar]
  163. Percy J. M., Pryde J. G., Apps D. K. Isolation of ATPase I, the proton pump of chromaffin-granule membranes. Biochem J. 1985 Nov 1;231(3):557–564. doi: 10.1042/bj2310557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Perera I. Y., Li X., Sze H. Several distinct genes encode nearly identical to 16 kDa proteolipids of the vacuolar H(+)-ATPase from Arabidopsis thaliana. Plant Mol Biol. 1995 Oct;29(2):227–244. doi: 10.1007/BF00043648. [DOI] [PubMed] [Google Scholar]
  165. Perin M. S., Fried V. A., Stone D. K., Xie X. S., Südhof T. C. Structure of the 116-kDa polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump. J Biol Chem. 1991 Feb 25;266(6):3877–3881. [PubMed] [Google Scholar]
  166. Pietrantonio P. V., Gill S. S. Sequence of a 17 kDa vacuolar H(+)-ATPase proteolipid subunit from insect midgut and Malpighian tubules. Insect Biochem Mol Biol. 1993 Sep;23(6):675–680. doi: 10.1016/0965-1748(93)90041-p. [DOI] [PubMed] [Google Scholar]
  167. Preston R. A., Murphy R. F., Jones E. W. Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7027–7031. doi: 10.1073/pnas.86.18.7027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Puopolo K., Forgac M. Functional reassembly of the coated vesicle proton pump. J Biol Chem. 1990 Sep 5;265(25):14836–14841. [PubMed] [Google Scholar]
  169. Puopolo K., Kumamoto C., Adachi I., Forgac M. A single gene encodes the catalytic "A" subunit of the bovine vacuolar H(+)-ATPase. J Biol Chem. 1991 Dec 25;266(36):24564–24572. [PubMed] [Google Scholar]
  170. Puopolo K., Kumamoto C., Adachi I., Magner R., Forgac M. Differential expression of the "B" subunit of the vacuolar H(+)-ATPase in bovine tissues. J Biol Chem. 1992 Feb 25;267(6):3696–3706. [PubMed] [Google Scholar]
  171. Puopolo K., Sczekan M., Magner R., Forgac M. The 40-kDa subunit enhances but is not required for activity of the coated vesicle proton pump. J Biol Chem. 1992 Mar 15;267(8):5171–5176. [PubMed] [Google Scholar]
  172. Páli T., Finbow M. E., Holzenburg A., Findlay J. B., Marsh D. Lipid-protein interactions and assembly of the 16-kDa channel polypeptide from Nephrops norvegicus. Studies with spin-label electron spin resonance spectroscopy and electron microscopy. Biochemistry. 1995 Jul 18;34(28):9211–9218. doi: 10.1021/bi00028a034. [DOI] [PubMed] [Google Scholar]
  173. Randall S. K., Sze H. Probing the catalytic subunit of the tonoplast H+-ATPase from oat roots. Binding of 7-chloro-4-nitrobenzo-2-oxa-1,3,-diazole to the 72-kilodalton polypeptide. J Biol Chem. 1987 May 25;262(15):7135–7141. [PubMed] [Google Scholar]
  174. Rautiala T. J., Koskinen A. M., Vänänen H. K. Purification of vacuolar ATPase with bafilomycin C1 affinity chromatography. Biochem Biophys Res Commun. 1993 Jul 15;194(1):50–56. doi: 10.1006/bbrc.1993.1783. [DOI] [PubMed] [Google Scholar]
  175. Rea P. A., Griffith C. J., Sanders D. Purification of the N,N'-dicyclohexylcarbodiimide-binding proteolipid of a higher plant tonoplast H+-ATPase. J Biol Chem. 1987 Oct 25;262(30):14745–14752. [PubMed] [Google Scholar]
  176. Reviakine I., Stoylova S., Holzenburg A. Surfactosomes: a novel approach to the reconstitution and 2-D crystallisation of membrane proteins. FEBS Lett. 1996 Feb 19;380(3):296–300. doi: 10.1016/0014-5793(96)00063-4. [DOI] [PubMed] [Google Scholar]
  177. Sabbert D., Engelbrecht S., Junge W. Intersubunit rotation in active F-ATPase. Nature. 1996 Jun 13;381(6583):623–625. doi: 10.1038/381623a0. [DOI] [PubMed] [Google Scholar]
  178. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  179. Shih C. K., Kwong J., Montalvo E., Neff N. Expression of a proteolipid gene from a high-copy-number plasmid confers trifluoperazine resistance to Saccharomyces cerevisiae. Mol Cell Biol. 1990 Jul;10(7):3397–3404. doi: 10.1128/mcb.10.7.3397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Shih C. K., Wagner R., Feinstein S., Kanik-Ennulat C., Neff N. A dominant trifluoperazine resistance gene from Saccharomyces cerevisiae has homology with F0F1 ATP synthase and confers calcium-sensitive growth. Mol Cell Biol. 1988 Aug;8(8):3094–3103. doi: 10.1128/mcb.8.8.3094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Sparkowski J., Mense M., Anders J., Schlegel R. E5 oncoprotein transmembrane mutants dissociate fibroblast transforming activity from 16-kilodalton protein binding and platelet-derived growth factor receptor binding and phosphorylation. J Virol. 1996 Apr;70(4):2420–2430. doi: 10.1128/jvi.70.4.2420-2430.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Straight S. W., Herman B., McCance D. J. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol. 1995 May;69(5):3185–3192. doi: 10.1128/jvi.69.5.3185-3192.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Sumner J. P., Dow J. A., Earley F. G., Klein U., Jäger D., Wieczorek H. Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem. 1995 Mar 10;270(10):5649–5653. doi: 10.1074/jbc.270.10.5649. [DOI] [PubMed] [Google Scholar]
  184. Sun S. Z., Xie X. S., Stone D. K. Isolation and reconstitution of the dicyclohexylcarbodiimide-sensitive proton pore of the clathrin-coated vesicle proton translocating complex. J Biol Chem. 1987 Oct 25;262(30):14790–14794. [PubMed] [Google Scholar]
  185. Supek F., Supekova L., Nelson N. Features of vacuolar H(+)-ATPase revealed by yeast suppressor mutants. J Biol Chem. 1994 Oct 21;269(42):26479–26485. [PubMed] [Google Scholar]
  186. Supekova L., Sbia M., Supek F., Ma Y., Nelson N. A novel subunit of vacuolar H(+)-ATPase related to the b subunit of F-ATPases. J Exp Biol. 1996 May;199(Pt 5):1147–1156. doi: 10.1242/jeb.199.5.1147. [DOI] [PubMed] [Google Scholar]
  187. Supeková L., Supek F., Nelson N. The Saccharomyces cerevisiae VMA10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H(+)-ATPase. J Biol Chem. 1995 Jun 9;270(23):13726–13732. doi: 10.1074/jbc.270.23.13726. [DOI] [PubMed] [Google Scholar]
  188. Sze H., Ward J. M., Lai S. Vacuolar H(+)-translocating ATPases from plants: structure, function, and isoforms. J Bioenerg Biomembr. 1992 Aug;24(4):371–381. doi: 10.1007/BF00762530. [DOI] [PubMed] [Google Scholar]
  189. Taiz L., Nelson H., Maggert K., Morgan L., Yatabe B., Taiz S. L., Rubinstein B., Nelson N. Functional analysis of conserved cysteine residues in the catalytic subunit of the yeast vacuolar H(+)-ATPase. Biochim Biophys Acta. 1994 Sep 14;1194(2):329–334. doi: 10.1016/0005-2736(94)90315-8. [DOI] [PubMed] [Google Scholar]
  190. Takase K., Kakinuma S., Yamato I., Konishi K., Igarashi K., Kakinuma Y. Sequencing and characterization of the ntp gene cluster for vacuolar-type Na(+)-translocating ATPase of Enterococcus hirae. J Biol Chem. 1994 Apr 15;269(15):11037–11044. [PubMed] [Google Scholar]
  191. Tang C., Capaldi R. A. Characterization of the interface between gamma and epsilon subunits of Escherichia coli F1-ATPase. J Biol Chem. 1996 Feb 9;271(6):3018–3024. doi: 10.1074/jbc.271.6.3018. [DOI] [PubMed] [Google Scholar]
  192. Tomashek J. J., Sonnenburg J. L., Artimovich J. M., Klionsky D. J. Resolution of subunit interactions and cytoplasmic subcomplexes of the yeast vacuolar proton-translocating ATPase. J Biol Chem. 1996 Apr 26;271(17):10397–10404. doi: 10.1074/jbc.271.17.10397. [DOI] [PubMed] [Google Scholar]
  193. Tsiantis M. S., Bartholomew D. M., Smith J. A. Salt regulation of transcript levels for the c subunit of a leaf vacuolar H(+)-ATPase in the halophyte Mesembryanthemum crystallinum. Plant J. 1996 May;9(5):729–736. doi: 10.1046/j.1365-313x.1996.9050729.x. [DOI] [PubMed] [Google Scholar]
  194. Uchida E., Ohsumi Y., Anraku Y. Characterization and function of catalytic subunit alpha of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. A study with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. J Biol Chem. 1988 Jan 5;263(1):45–51. [PubMed] [Google Scholar]
  195. Uchida E., Ohsumi Y., Anraku Y. Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1985 Jan 25;260(2):1090–1095. [PubMed] [Google Scholar]
  196. Umemoto N., Ohya Y., Anraku Y. VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H(+)-ATPase activity. J Biol Chem. 1991 Dec 25;266(36):24526–24532. [PubMed] [Google Scholar]
  197. Umemoto N., Yoshihisa T., Hirata R., Anraku Y. Roles of the VMA3 gene product, subunit c of the vacuolar membrane H(+)-ATPase on vacuolar acidification and protein transport. A study with VMA3-disrupted mutants of Saccharomyces cerevisiae. J Biol Chem. 1990 Oct 25;265(30):18447–18453. [PubMed] [Google Scholar]
  198. Usta J., Griffiths D. E. Organotin-flavone complexes: a new class of fluorescent probes for F1F0ATPase. Biochem Biophys Res Commun. 1992 Oct 15;188(1):365–371. doi: 10.1016/0006-291x(92)92394-d. [DOI] [PubMed] [Google Scholar]
  199. Vik S. B., Antonio B. J. A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem. 1994 Dec 2;269(48):30364–30369. [PubMed] [Google Scholar]
  200. Wadsworth S. J., van Rossum G. D. Role of vacuolar adenosine triphosphatase in the regulation of cytosolic pH in hepatocytes. J Membr Biol. 1994 Oct;142(1):21–34. doi: 10.1007/BF00233380. [DOI] [PubMed] [Google Scholar]
  201. Wang S. Y., Moriyama Y., Mandel M., Hulmes J. D., Pan Y. C., Danho W., Nelson H., Nelson N. Cloning of cDNA encoding a 32-kDa protein. An accessory polypeptide of the H+-ATPase from chromaffin granules. J Biol Chem. 1988 Nov 25;263(33):17638–17642. [PubMed] [Google Scholar]
  202. Wang Z. Q., Gluck S. Isolation and properties of bovine kidney brush border vacuolar H(+)-ATPase. A proton pump with enzymatic and structural differences from kidney microsomal H(+)-ATPase. J Biol Chem. 1990 Dec 15;265(35):21957–21965. [PubMed] [Google Scholar]
  203. Watts S. D., Zhang Y., Fillingame R. H., Capaldi R. A. The gamma subunit in the Escherichia coli ATP synthase complex (ECF1F0) extends through the stalk and contacts the c subunits of the F0 part. FEBS Lett. 1995 Jul 17;368(2):235–238. doi: 10.1016/0014-5793(95)00658-v. [DOI] [PubMed] [Google Scholar]
  204. Webster L. C., Apps D. K. Analysis of nucleotide binding by a vacuolar proton-translocating adenosine triphosphatase. Eur J Biochem. 1996 Aug 15;240(1):156–164. doi: 10.1111/j.1432-1033.1996.0156h.x. [DOI] [PubMed] [Google Scholar]
  205. Webster L. C., Griffiths D. E., Apps D. K. Interaction of vacuolar-type H(+)-ATPases with fluorescent organotin-flavone complexes. Biochem Soc Trans. 1993 Aug;21(3):253S–253S. doi: 10.1042/bst021253s. [DOI] [PubMed] [Google Scholar]
  206. Wilson D. W., Lewis M. J., Pelham H. R. pH-dependent binding of KDEL to its receptor in vitro. J Biol Chem. 1993 Apr 5;268(10):7465–7468. [PubMed] [Google Scholar]
  207. Xie X. S., Stone D. K. Isolation and reconstitution of the clathrin-coated vesicle proton translocating complex. J Biol Chem. 1986 Feb 25;261(6):2492–2495. [PubMed] [Google Scholar]
  208. Xie X. S., Stone D. K. Partial resolution and reconstitution of the subunits of the clathrin-coated vesicle proton ATPase responsible for Ca2+-activated ATP hydrolysis. J Biol Chem. 1988 Jul 15;263(20):9859–9867. [PubMed] [Google Scholar]
  209. Yamashiro C. T., Kane P. M., Wolczyk D. F., Preston R. A., Stevens T. H. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol Cell Biol. 1990 Jul;10(7):3737–3749. doi: 10.1128/mcb.10.7.3737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Young G. P., Qiao J. Z., Al-Awqati Q. Purification and reconstitution of the proton-translocating ATPase of Golgi-enriched membranes. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9590–9594. doi: 10.1073/pnas.85.24.9590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Zhang J., Feng Y., Forgac M. Proton conduction and bafilomycin binding by the V0 domain of the coated vesicle V-ATPase. J Biol Chem. 1994 Sep 23;269(38):23518–23523. [PubMed] [Google Scholar]
  212. Zhang J., Myers M., Forgac M. Characterization of the V0 domain of the coated vesicle (H+)-ATPase. J Biol Chem. 1992 May 15;267(14):9773–9778. [PubMed] [Google Scholar]
  213. Zhang J., Vasilyeva E., Feng Y., Forgac M. Inhibition and labeling of the coated vesicle V-ATPase by 2-azido-[32P]ATP. J Biol Chem. 1995 Jun 30;270(26):15494–15500. doi: 10.1074/jbc.270.26.15494. [DOI] [PubMed] [Google Scholar]
  214. Zhang Y., Fillingame R. H. Changing the ion binding specificity of the Escherichia coli H(+)-transporting ATP synthase by directed mutagenesis of subunit c. J Biol Chem. 1995 Jan 6;270(1):87–93. doi: 10.1074/jbc.270.1.87. [DOI] [PubMed] [Google Scholar]
  215. Zhang Y., Fillingame R. H. Subunits coupling H+ transport and ATP synthesis in the Escherichia coli ATP synthase. Cys-Cys cross-linking of F1 subunit epsilon to the polar loop of F0 subunit c. J Biol Chem. 1995 Oct 13;270(41):24609–24614. [PubMed] [Google Scholar]
  216. Zhang Y., Oldenburg M., Fillingame R. H. Suppressor mutations in F1 subunit epsilon recouple ATP-driven H+ translocation in uncoupled Q42E subunit c mutant of Escherichia coli F1F0 ATP synthase. J Biol Chem. 1994 Apr 8;269(14):10221–10224. [PubMed] [Google Scholar]
  217. Zhou Y., Duncan T. M., Bulygin V. V., Hutcheon M. L., Cross R. L. ATP hydrolysis by membrane-bound Escherichia coli F0F1 causes rotation of the gamma subunit relative to the beta subunits. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):96–100. doi: 10.1016/0005-2728(96)00056-4. [DOI] [PubMed] [Google Scholar]
  218. Zimniak L., Dittrich P., Gogarten J. P., Kibak H., Taiz L. The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the beta-chain of F0F1-ATPases. J Biol Chem. 1988 Jul 5;263(19):9102–9112. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES