Abstract
The Plasmodium falciparum CTP:phosphocholine cytidylyltransferase (PfCCT) has been isolated from an overexpressing strain of Escherichia coli. The plasmid pETPfCCT mediated the overexpression of the full-length polypeptide directly. The recombinant protein corresponded to 6-9% of the total cellular proteins and was found essentially in the insoluble membrane fraction. Urea at 6 M was used to solubilize the recombinant protein from the insoluble fraction. The CCT activity was restored upon the removal of urea, and the protein was subsequently purified to homogeneity on a Q-Sepharose column. Approx. 1.4 mg of pure enzyme was obtained from a 250 ml culture of E. coli. Biochemical properties, including in vitro substrate specificity and enzymic characterization, were assessed. The lipid regulation of the recombinant plasmodial CCT activity was characterized for the first time. The Km values were 0.49+/-0.03 mM (mean+/-S.E.M.) for phosphocholine and 10.9+/-0.5 mM for CTP in the presence of lipid activators (oleic acid/egg phosphatidylcholine vesicles), whereas the Km values were 0.66+/-0.07 mM for phosphocholine and 28.9+/-0.8 mM for CTP in the absence of lipid activators. The PfCCT activity was stimulated to the same extent in response to egg phosphatidylcholine vesicles containing anionic lipids, such as oleic acid, cardiolipin and phosphatidylglycerol, and was insensitive or slightly sensitive to PC vesicles containing neutral lipids, such as diacylglycerol and monoacylglycerol. Furthermore, the stimulated enzyme activity by oleic acid was antagonized by the cationic aminolipid sphingosine. These lipid-dependence properties place the parasite enzyme intermediately between the mammalian enzymes and the yeast enzyme.
Full Text
The Full Text of this article is available as a PDF (416.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ancelin M. L., Vial H. J. Quaternary ammonium compounds efficiently inhibit Plasmodium falciparum growth in vitro by impairment of choline transport. Antimicrob Agents Chemother. 1986 May;29(5):814–820. doi: 10.1128/aac.29.5.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ancelin M. L., Vial H. J. Regulation of phosphatidylcholine biosynthesis in Plasmodium-infected erythrocytes. Biochim Biophys Acta. 1989 Jan 23;1001(1):82–89. doi: 10.1016/0005-2760(89)90310-x. [DOI] [PubMed] [Google Scholar]
- Arnold R. S., Cornell R. B. Lipid regulation of CTP: phosphocholine cytidylyltransferase: electrostatic, hydrophobic, and synergistic interactions of anionic phospholipids and diacylglycerol. Biochemistry. 1996 Jul 30;35(30):9917–9924. doi: 10.1021/bi960397c. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Billah M. M., Anthes J. C. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J. 1990 Jul 15;269(2):281–291. doi: 10.1042/bj2690281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Carman G. M., Henry S. A. Phospholipid biosynthesis in yeast. Annu Rev Biochem. 1989;58:635–669. doi: 10.1146/annurev.bi.58.070189.003223. [DOI] [PubMed] [Google Scholar]
- Carman G. M., Zeimetz G. M. Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. J Biol Chem. 1996 Jun 7;271(23):13293–13296. doi: 10.1074/jbc.271.23.13293. [DOI] [PubMed] [Google Scholar]
- Cornell R. B., Kalmar G. B., Kay R. J., Johnson M. A., Sanghera J. S., Pelech S. L. Functions of the C-terminal domain of CTP: phosphocholine cytidylyltransferase. Effects of C-terminal deletions on enzyme activity, intracellular localization and phosphorylation potential. Biochem J. 1995 Sep 1;310(Pt 2):699–708. doi: 10.1042/bj3100699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornell R. B. Regulation of CTP:phosphocholine cytidylyltransferase by lipids. 1. Negative surface charge dependence for activation. Biochemistry. 1991 Jun 18;30(24):5873–5880. doi: 10.1021/bi00238a010. [DOI] [PubMed] [Google Scholar]
- Cornell R. B. Regulation of CTP:phosphocholine cytidylyltransferase by lipids. 2. Surface curvature, acyl chain length, and lipid-phase dependence for activation. Biochemistry. 1991 Jun 18;30(24):5881–5888. doi: 10.1021/bi00238a011. [DOI] [PubMed] [Google Scholar]
- Cornell R., Vance D. E. Translocation of CTP: phosphocholine cytidylyltransferase from cytosol to membranes in HeLa cells: stimulation by fatty acid, fatty alcohol, mono- and diacylglycerol. Biochim Biophys Acta. 1987 May 13;919(1):26–36. doi: 10.1016/0005-2760(87)90214-1. [DOI] [PubMed] [Google Scholar]
- Craig L., Johnson J. E., Cornell R. B. Identification of the membrane-binding domain of rat liver CTP:phosphocholine cytidylyltransferase using chymotrypsin proteolysis. J Biol Chem. 1994 Feb 4;269(5):3311–3317. [PubMed] [Google Scholar]
- Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
- Feldman D. A., Weinhold P. A. CTP:phosphorylcholine cytidylyltransferase from rat liver. Isolation and characterization of the catalytic subunit. J Biol Chem. 1987 Jul 5;262(19):9075–9081. [PubMed] [Google Scholar]
- Greenberg M. L., Lopes J. M. Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 1996 Mar;60(1):1–20. doi: 10.1128/mr.60.1.1-20.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammond D. J., Burchell J. R., Pudney M. Inhibition of pyrimidine biosynthesis de novo in Plasmodium falciparum by 2-(4-t-butylcyclohexyl)-3-hydroxy-1,4-naphthoquinone in vitro. Mol Biochem Parasitol. 1985 Jan;14(1):97–109. doi: 10.1016/0166-6851(85)90109-4. [DOI] [PubMed] [Google Scholar]
- Hatch G. M., Jamil H., Utal A. K., Vance D. E. On the mechanism of the okadaic acid-induced inhibition of phosphatidylcholine biosynthesis in isolated rat hepatocytes. J Biol Chem. 1992 Aug 5;267(22):15751–15758. [PubMed] [Google Scholar]
- Hogan M., Zimmermann L. J., Wang J., Kuliszewski M., Liu J., Post M. Increased expression of CTP:phosphocholine cytidylyltransferase in maturing type II cells. Am J Physiol. 1994 Jul;267(1 Pt 1):L25–L32. doi: 10.1152/ajplung.1994.267.1.L25. [DOI] [PubMed] [Google Scholar]
- Houweling M., Jamil H., Hatch G. M., Vance D. E. Dephosphorylation of CTP-phosphocholine cytidylyltransferase is not required for binding to membranes. J Biol Chem. 1994 Mar 11;269(10):7544–7551. [PubMed] [Google Scholar]
- Jackowski S. Coordination of membrane phospholipid synthesis with the cell cycle. J Biol Chem. 1994 Feb 4;269(5):3858–3867. [PubMed] [Google Scholar]
- Jamil H., Hatch G. M., Vance D. E. Evidence that binding of CTP:phosphocholine cytidylyltransferase to membranes in rat hepatocytes is modulated by the ratio of bilayer- to non-bilayer-forming lipids. Biochem J. 1993 Apr 15;291(Pt 2):419–427. doi: 10.1042/bj2910419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. E., Cornell R. B. Membrane-binding amphipathic alpha-helical peptide derived from CTP:phosphocholine cytidylyltransferase. Biochemistry. 1994 Apr 12;33(14):4327–4335. doi: 10.1021/bi00180a029. [DOI] [PubMed] [Google Scholar]
- Johnson J. E., Kalmar G. B., Sohal P. S., Walkey C. J., Yamashita S., Cornell R. B. Comparison of the lipid regulation of yeast and rat CTP: phosphocholine cytidylyltransferase expressed in COS cells. Biochem J. 1992 Aug 1;285(Pt 3):815–820. doi: 10.1042/bj2850815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalmar G. B., Kay R. J., LaChance A. C., Cornell R. B. Primary structure and expression of a human CTP:phosphocholine cytidylyltransferase. Biochim Biophys Acta. 1994 Oct 18;1219(2):328–334. doi: 10.1016/0167-4781(94)90056-6. [DOI] [PubMed] [Google Scholar]
- Kalmar G. B., Kay R. J., Lachance A., Aebersold R., Cornell R. B. Cloning and expression of rat liver CTP: phosphocholine cytidylyltransferase: an amphipathic protein that controls phosphatidylcholine synthesis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6029–6033. doi: 10.1073/pnas.87.16.6029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MacDonald J. I., Kent C. Baculovirus-mediated expression of rat liver CTP:phosphocholine cytidylyltransferase. Protein Expr Purif. 1993 Feb;4(1):1–7. doi: 10.1006/prep.1993.1001. [DOI] [PubMed] [Google Scholar]
- McDonough V. M., Buxeda R. J., Bruno M. E., Ozier-Kalogeropoulos O., Adeline M. T., McMaster C. R., Bell R. M., Carman G. M. Regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by CTP. J Biol Chem. 1995 Aug 11;270(32):18774–18780. doi: 10.1074/jbc.270.32.18774. [DOI] [PubMed] [Google Scholar]
- McGee T. P., Skinner H. B., Bankaitis V. A. Functional redundancy of CDP-ethanolamine and CDP-choline pathway enzymes in phospholipid biosynthesis: ethanolamine-dependent effects on steady-state membrane phospholipid composition in Saccharomyces cerevisiae. J Bacteriol. 1994 Nov;176(22):6861–6868. doi: 10.1128/jb.176.22.6861-6868.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMaster C. R., Bell R. M. Phosphatidylcholine biosynthesis via the CDP-choline pathway in Saccharomyces cerevisiae. Multiple mechanisms of regulation. J Biol Chem. 1994 May 20;269(20):14776–14783. [PubMed] [Google Scholar]
- Nikoloff D. M., Henry S. A. Genetic analysis of yeast phospholipid biosynthesis. Annu Rev Genet. 1991;25:559–583. doi: 10.1146/annurev.ge.25.120191.003015. [DOI] [PubMed] [Google Scholar]
- Sohal P. S., Cornell R. B. Sphingosine inhibits the activity of rat liver CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1990 Jul 15;265(20):11746–11750. [PubMed] [Google Scholar]
- Studier F. W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol. 1991 May 5;219(1):37–44. doi: 10.1016/0022-2836(91)90855-z. [DOI] [PubMed] [Google Scholar]
- Sweitzer T. D., Kent C. Expression of wild-type and mutant rat liver CTP: phosphocholine cytidylyltransferase in a cytidylyltransferase-deficient Chinese hamster ovary cell line. Arch Biochem Biophys. 1994 May 15;311(1):107–116. doi: 10.1006/abbi.1994.1215. [DOI] [PubMed] [Google Scholar]
- Trotter P. J., Voelker D. R. Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces cerevisiae. J Biol Chem. 1995 Mar 17;270(11):6062–6070. doi: 10.1074/jbc.270.11.6062. [DOI] [PubMed] [Google Scholar]
- Tsukagoshi Y., Nikawa J., Yamashita S. Molecular cloning and characterization of the gene encoding cholinephosphate cytidylyltransferase in Saccharomyces cerevisiae. Eur J Biochem. 1987 Dec 15;169(3):477–486. doi: 10.1111/j.1432-1033.1987.tb13635.x. [DOI] [PubMed] [Google Scholar]
- Vial H. J., Ancelin M. L. Malarial lipids. An overview. Subcell Biochem. 1992;18:259–306. [PubMed] [Google Scholar]
- Wang Y., Kent C. Effects of altered phosphorylation sites on the properties of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1995 Jul 28;270(30):17843–17849. doi: 10.1074/jbc.270.30.17843. [DOI] [PubMed] [Google Scholar]
- Wang Y., Kent C. Identification of an inhibitory domain of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1995 Aug 11;270(32):18948–18952. doi: 10.1074/jbc.270.32.18948. [DOI] [PubMed] [Google Scholar]
- Wang Y., MacDonald J. I., Kent C. Regulation of CTP:phosphocholine cytidylyltransferase in HeLa cells. Effect of oleate on phosphorylation and intracellular localization. J Biol Chem. 1993 Mar 15;268(8):5512–5518. [PubMed] [Google Scholar]
- Watkins J. D., Kent C. Regulation of CTP:phosphocholine cytidylyltransferase activity and subcellular location by phosphorylation in Chinese hamster ovary cells. The effect of phospholipase C treatment. J Biol Chem. 1991 Nov 5;266(31):21113–21117. [PubMed] [Google Scholar]
- Weinhold P. A., Feldman D. A. Choline-phosphate cytidylyltransferase. Methods Enzymol. 1992;209:248–258. doi: 10.1016/0076-6879(92)09031-w. [DOI] [PubMed] [Google Scholar]
- Weinhold P. A., Rounsifer M. E., Feldman D. A. The purification and characterization of CTP:phosphorylcholine cytidylyltransferase from rat liver. J Biol Chem. 1986 Apr 15;261(11):5104–5110. [PubMed] [Google Scholar]
- Weinhold P. A., Rounsifer M. E., Williams S. E., Brubaker P. G., Feldman D. A. CTP:phosphorylcholine cytidylyltransferase in rat lung. The effect of free fatty acids on the translocation of activity between microsomes and cytosol. J Biol Chem. 1984 Aug 25;259(16):10315–10321. [PubMed] [Google Scholar]
- Yang W., Boggs K. P., Jackowski S. The association of lipid activators with the amphipathic helical domain of CTP:phosphocholine cytidylyltransferase accelerates catalysis by increasing the affinity of the enzyme for CTP. J Biol Chem. 1995 Oct 13;270(41):23951–23957. doi: 10.1074/jbc.270.41.23951. [DOI] [PubMed] [Google Scholar]
- Yang W., Jackowski S. Lipid activation of CTP:phosphocholine cytidylyltransferase is regulated by the phosphorylated carboxyl-terminal domain. J Biol Chem. 1995 Jul 14;270(28):16503–16506. doi: 10.1074/jbc.270.28.16503. [DOI] [PubMed] [Google Scholar]
- Yeo H. J., Sri Widada J., Mercereau-Puijalon O., Vial H. J. Molecular cloning of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum. Eur J Biochem. 1995 Oct 1;233(1):62–72. doi: 10.1111/j.1432-1033.1995.062_1.x. [DOI] [PubMed] [Google Scholar]