Abstract
CTP-phosphocholine cytidylyltransferase (CT) is a key regulatory enzyme in the biosynthesis of phosphatidylcholine (PC) in many cells. Enzyme-membrane interactions appear to play an important role in CT activation. A putative membrane-binding domain appears to be located between residues 236 and 293 from the N-terminus. To map the membrane-binding domain more precisely, glutathione S-transferase fusion proteins were prepared that contained deletions of various domains in this putative lipid-binding region. The fusion proteins were assessed for their binding of [3H]PC/oleic acid vesicles. Fusion proteins encompassing residues 267-277 bound to PC/oleic acid vesicles, whereas fragments lacking this region exhibited no specific binding to the lipid vesicles. The membrane-binding characteristics of the CT fusion proteins were also examined using intact lung microsomes. Only fragments encompassing residues 267-277 competed with full-length 125I-labelled CT, expressed in recombinant Sf9 insect cells, for microsomal membrane binding. To investigate the role of this region in PC biosynthesis, A549 and L2 cells were transfected with cDNA for CT mutants under the control of a glucocorticoid-inducible long terminal repeat (LTR) promoter. Induction of CT mutants containing residues 267-277 in transfectants resulted in reduced PC synthesis. The decrease in PC synthesis was accompanied by a shift in endogenous CT activity from the particulate to the soluble fraction. Expression of CT mutants lacking this region in A549 and L2 cells did not affect PC formation and subcellular distribution of CT activity. These results suggest that the CT region located between residues 267 and 277 from the N-terminus is required for the interaction of CT with membranes.
Full Text
The Full Text of this article is available as a PDF (583.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cornell R. B., Kalmar G. B., Kay R. J., Johnson M. A., Sanghera J. S., Pelech S. L. Functions of the C-terminal domain of CTP: phosphocholine cytidylyltransferase. Effects of C-terminal deletions on enzyme activity, intracellular localization and phosphorylation potential. Biochem J. 1995 Sep 1;310(Pt 2):699–708. doi: 10.1042/bj3100699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornell R. B. Regulation of CTP:phosphocholine cytidylyltransferase by lipids. 1. Negative surface charge dependence for activation. Biochemistry. 1991 Jun 18;30(24):5873–5880. doi: 10.1021/bi00238a010. [DOI] [PubMed] [Google Scholar]
- Cornell R. B. Regulation of CTP:phosphocholine cytidylyltransferase by lipids. 2. Surface curvature, acyl chain length, and lipid-phase dependence for activation. Biochemistry. 1991 Jun 18;30(24):5881–5888. doi: 10.1021/bi00238a011. [DOI] [PubMed] [Google Scholar]
- Craig L., Johnson J. E., Cornell R. B. Identification of the membrane-binding domain of rat liver CTP:phosphocholine cytidylyltransferase using chymotrypsin proteolysis. J Biol Chem. 1994 Feb 4;269(5):3311–3317. [PubMed] [Google Scholar]
- Feldman D. A., Rounsifer M. E., Weinhold P. A. The stimulation and binding of CTP: phosphorylcholine cytidylyltransferase by phosphatidylcholine-oleic acid vesicles. Biochim Biophys Acta. 1985 Mar 6;833(3):429–437. doi: 10.1016/0005-2760(85)90100-6. [DOI] [PubMed] [Google Scholar]
- Hirt R. P., Poulain-Godefroy O., Billotte J., Kraehenbuhl J. P., Fasel N. Highly inducible synthesis of heterologous proteins in epithelial cells carrying a glucocorticoid-responsive vector. Gene. 1992 Feb 15;111(2):199–206. doi: 10.1016/0378-1119(92)90687-k. [DOI] [PubMed] [Google Scholar]
- Hogan M., Zimmermann L. J., Wang J., Kuliszewski M., Liu J., Post M. Increased expression of CTP:phosphocholine cytidylyltransferase in maturing type II cells. Am J Physiol. 1994 Jul;267(1 Pt 1):L25–L32. doi: 10.1152/ajplung.1994.267.1.L25. [DOI] [PubMed] [Google Scholar]
- Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15;77(1):61–68. doi: 10.1016/0378-1119(89)90359-4. [DOI] [PubMed] [Google Scholar]
- Houweling M., Cui Z., Anfuso C. D., Bussière M., Chen M. H., Vance D. E. CTP: phosphocholine cytidylyltransferase is both a nuclear and cytoplasmic protein in primary hepatocytes. Eur J Cell Biol. 1996 Jan;69(1):55–63. [PubMed] [Google Scholar]
- Houweling M., Jamil H., Hatch G. M., Vance D. E. Dephosphorylation of CTP-phosphocholine cytidylyltransferase is not required for binding to membranes. J Biol Chem. 1994 Mar 11;269(10):7544–7551. [PubMed] [Google Scholar]
- Jamil H., Utal A. K., Vance D. E. Evidence that cyclic AMP-induced inhibition of phosphatidylcholine biosynthesis is caused by a decrease in cellular diacylglycerol levels in cultured rat hepatocytes. J Biol Chem. 1992 Jan 25;267(3):1752–1760. [PubMed] [Google Scholar]
- Johnson J. E., Cornell R. B. Membrane-binding amphipathic alpha-helical peptide derived from CTP:phosphocholine cytidylyltransferase. Biochemistry. 1994 Apr 12;33(14):4327–4335. doi: 10.1021/bi00180a029. [DOI] [PubMed] [Google Scholar]
- Kalmar G. B., Kay R. J., Lachance A., Aebersold R., Cornell R. B. Cloning and expression of rat liver CTP: phosphocholine cytidylyltransferase: an amphipathic protein that controls phosphatidylcholine synthesis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6029–6033. doi: 10.1073/pnas.87.16.6029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kent C. Regulation of phosphatidylcholine biosynthesis. Prog Lipid Res. 1990;29(2):87–105. doi: 10.1016/0163-7827(90)90010-i. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MacDonald J. I., Kent C. Baculovirus-mediated expression of rat liver CTP:phosphocholine cytidylyltransferase. Protein Expr Purif. 1993 Feb;4(1):1–7. doi: 10.1006/prep.1993.1001. [DOI] [PubMed] [Google Scholar]
- MacDonald J. I., Kent C. Identification of phosphorylation sites in rat liver CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1994 Apr 8;269(14):10529–10537. [PubMed] [Google Scholar]
- Post M., van Golde L. M. Metabolic and developmental aspects of the pulmonary surfactant system. Biochim Biophys Acta. 1988 Jun 9;947(2):249–286. doi: 10.1016/0304-4157(88)90011-1. [DOI] [PubMed] [Google Scholar]
- Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tronchère H., Record M., Tercé F., Chap H. Phosphatidylcholine cycle and regulation of phosphatidylcholine biosynthesis by enzyme translocation. Biochim Biophys Acta. 1994 May 13;1212(2):137–151. doi: 10.1016/0005-2760(94)90248-8. [DOI] [PubMed] [Google Scholar]
- Wang Y., Kent C. Effects of altered phosphorylation sites on the properties of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1995 Jul 28;270(30):17843–17849. doi: 10.1074/jbc.270.30.17843. [DOI] [PubMed] [Google Scholar]
- Wang Y., MacDonald J. I., Kent C. Identification of the nuclear localization signal of rat liver CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1995 Jan 6;270(1):354–360. doi: 10.1074/jbc.270.1.354. [DOI] [PubMed] [Google Scholar]
- Wang Y., Sweitzer T. D., Weinhold P. A., Kent C. Nuclear localization of soluble CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1993 Mar 15;268(8):5899–5904. [PubMed] [Google Scholar]
- Watkins J. D., Kent C. Immunolocalization of membrane-associated CTP:phosphocholine cytidylyltransferase in phosphatidylcholine-deficient Chinese hamster ovary cells. J Biol Chem. 1992 Mar 15;267(8):5686–5692. [PubMed] [Google Scholar]
- Weinhold P. A., Rounsifer M. E., Charles L., Feldman D. A. Characterization of cytosolic forms of CTP: choline-phosphate cytidylyltransferase in lung, isolated alveolar type II cells, A549 cell and Hep G2 cells. Biochim Biophys Acta. 1989 Dec 18;1006(3):299–310. doi: 10.1016/0005-2760(89)90017-9. [DOI] [PubMed] [Google Scholar]
- Wieder T., Geilen C. C., Wieprecht M., Becker A., Orfanos C. E. Identification of a putative membrane-interacting domain of CTP:phosphocholine cytidylyltransferase from rat liver. FEBS Lett. 1994 May 30;345(2-3):207–210. doi: 10.1016/0014-5793(94)00433-1. [DOI] [PubMed] [Google Scholar]
- Wieprecht M., Wieder T., Paul C., Geilen C. C., Orfanos C. E. Evidence for phosphorylation of CTP:phosphocholine cytidylyltransferase by multiple proline-directed protein kinases. J Biol Chem. 1996 Apr 26;271(17):9955–9961. doi: 10.1074/jbc.271.17.9955. [DOI] [PubMed] [Google Scholar]
- Yang W., Boggs K. P., Jackowski S. The association of lipid activators with the amphipathic helical domain of CTP:phosphocholine cytidylyltransferase accelerates catalysis by increasing the affinity of the enzyme for CTP. J Biol Chem. 1995 Oct 13;270(41):23951–23957. doi: 10.1074/jbc.270.41.23951. [DOI] [PubMed] [Google Scholar]
- Yang W., Jackowski S. Lipid activation of CTP:phosphocholine cytidylyltransferase is regulated by the phosphorylated carboxyl-terminal domain. J Biol Chem. 1995 Jul 14;270(28):16503–16506. doi: 10.1074/jbc.270.28.16503. [DOI] [PubMed] [Google Scholar]
- Zimmermann L. J., Hogan M., Carlson K. S., Smith B. T., Post M. Regulation of phosphatidylcholine synthesis in fetal type II cells by CTP:phosphocholine cytidylyltransferase. Am J Physiol. 1993 Jun;264(6 Pt 1):L575–L580. doi: 10.1152/ajplung.1993.264.6.L575. [DOI] [PubMed] [Google Scholar]
- Zimmermann L. J., Lee W. S., Smith B. T., Post M. Cyclic AMP-dependent protein kinase does not regulate CTP:phosphocholine cytidylyltransferase activity in maturing type II cells. Biochim Biophys Acta. 1994 Feb 10;1211(1):44–50. doi: 10.1016/0005-2760(94)90137-6. [DOI] [PubMed] [Google Scholar]
