Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):487–493. doi: 10.1042/bj3250487

Cytokines modulate glucose transport in skeletal muscle by inducing the expression of inducible nitric oxide synthase.

S Bédard 1, B Marcotte 1, A Marette 1
PMCID: PMC1218586  PMID: 9230132

Abstract

The principal goal of the present study was to test the hypothesis that cytokines modulate glucose transport in skeletal muscle by increasing nitric oxide production. Cultured L6 skeletal muscle cells were incubated in the presence of tumour necrosis factor-alpha, interferon-gamma or lipopolysaccharide (LPS) alone or in combination for 24 h. Neither cytokines nor LPS alone induced NO production, as measured by nitrite concentrations in the medium. However, when used in combination, the two cytokines significantly stimulated NO production, and this effect was synergistically enhanced by the presence of LPS. Reverse transcriptase-PCR (RT-PCR) analysis revealed that NO release was associated with the induction of inducible (macrophage-type) NO synthase (iNOS). The increase in iNOS expression was confirmed at the protein level by Western-blot analysis and NADPH/diaphorase histochemical staining. Cytokines and LPS markedly increased basal glucose transport in L6 myocytes. Insulin also stimulated basal glucose transport, but significantly less in cells chronically exposed to cytokines/LPS. The sensitivity of L6 muscle cells to insulin-stimulated glucose transport was also significantly decreased by cytokines/LPS treatment. The NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME) inhibited nitrite production in cytokine/LPS-treated cells, and this prevented the increase in basal glucose transport and restored muscle cell responsiveness to insulin. Cytokines/LPS exposure significantly increased GLUT1 transporter protein levels but decreased GLUT4 expression in L6 cells. l-NAME treatment prevented the increase in GLUT1 protein content but failed to restore GLUT4 transporter levels. These results demonstrate that cytokines and LPS affect glucose transport and insulin action by inducing iNOS expression and NO production in skeletal muscle cells. The data further indicate that cytokines and LPS increase the expression of the GLUT1 transporter protein by an NO-dependent mechanism.

Full Text

The Full Text of this article is available as a PDF (372.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begum N., Ragolia L., Srinivasan M. Effect of tumor necrosis factor-alpha on insulin-stimulated mitogen-activated protein kinase cascade in cultured rat skeletal muscle cells. Eur J Biochem. 1996 May 15;238(1):214–220. doi: 10.1111/j.1432-1033.1996.0214q.x. [DOI] [PubMed] [Google Scholar]
  2. Chajek-Shaul T., Barash V., Weidenfeld J., Friedman G., Ziv E., Shohami E., Shiloni E. Lethal hypoglycemia and hypothermia induced by administration of low doses of tumor necrosis factor to adrenalectomized rats. Metabolism. 1990 Mar;39(3):242–250. doi: 10.1016/0026-0495(90)90042-b. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Cornelius P., Lee M. D., Marlowe M., Pekala P. H. Monokine regulation of glucose transporter mRNA in L6 myotubes. Biochem Biophys Res Commun. 1989 Nov 30;165(1):429–436. doi: 10.1016/0006-291x(89)91088-7. [DOI] [PubMed] [Google Scholar]
  5. Dombrowski L., Roy D., Marcotte B., Marette A. A new procedure for the isolation of plasma membranes, T tubules, and internal membranes from skeletal muscle. Am J Physiol. 1996 Apr;270(4 Pt 1):E667–E676. doi: 10.1152/ajpendo.1996.270.4.E667. [DOI] [PubMed] [Google Scholar]
  6. Evans D. A., Jacobs D. O., Wilmore D. W. Tumor necrosis factor enhances glucose uptake by peripheral tissues. Am J Physiol. 1989 Nov;257(5 Pt 2):R1182–R1189. doi: 10.1152/ajpregu.1989.257.5.R1182. [DOI] [PubMed] [Google Scholar]
  7. Frayn K. N. Hormonal control of metabolism in trauma and sepsis. Clin Endocrinol (Oxf) 1986 May;24(5):577–599. doi: 10.1111/j.1365-2265.1986.tb03288.x. [DOI] [PubMed] [Google Scholar]
  8. Hope B. T., Michael G. J., Knigge K. M., Vincent S. R. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2811–2814. doi: 10.1073/pnas.88.7.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hotamisligil G. S., Murray D. L., Choy L. N., Spiegelman B. M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4854–4858. doi: 10.1073/pnas.91.11.4854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kobzik L., Reid M. B., Bredt D. S., Stamler J. S. Nitric oxide in skeletal muscle. Nature. 1994 Dec 8;372(6506):546–548. doi: 10.1038/372546a0. [DOI] [PubMed] [Google Scholar]
  11. Kobzik L., Stringer B., Balligand J. L., Reid M. B., Stamler J. S. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem Biophys Res Commun. 1995 Jun 15;211(2):375–381. doi: 10.1006/bbrc.1995.1824. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lee M. D., Zentella A., Vine W., Pekala P. H., Cerami A. Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6. Proc Natl Acad Sci U S A. 1987 May;84(9):2590–2594. doi: 10.1073/pnas.84.9.2590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ling P. R., Bistrian B. R., Mendez B., Istfan N. W. Effects of systemic infusions of endotoxin, tumor necrosis factor, and interleukin-1 on glucose metabolism in the rat: relationship to endogenous glucose production and peripheral tissue glucose uptake. Metabolism. 1994 Mar;43(3):279–284. doi: 10.1016/0026-0495(94)90093-0. [DOI] [PubMed] [Google Scholar]
  15. Liu S., Adcock I. M., Old R. W., Barnes P. J., Evans T. W. Lipopolysaccharide treatment in vivo induces widespread tissue expression of inducible nitric oxide synthase mRNA. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1208–1213. doi: 10.1006/bbrc.1993.2380. [DOI] [PubMed] [Google Scholar]
  16. Mitsumoto Y., Burdett E., Grant A., Klip A. Differential expression of the GLUT1 and GLUT4 glucose transporters during differentiation of L6 muscle cells. Biochem Biophys Res Commun. 1991 Mar 15;175(2):652–659. doi: 10.1016/0006-291x(91)91615-j. [DOI] [PubMed] [Google Scholar]
  17. Moore W. M., Webber R. K., Jerome G. M., Tjoeng F. S., Misko T. P., Currie M. G. L-N6-(1-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J Med Chem. 1994 Nov 11;37(23):3886–3888. doi: 10.1021/jm00049a007. [DOI] [PubMed] [Google Scholar]
  18. Nakane M., Schmidt H. H., Pollock J. S., Förstermann U., Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993 Jan 25;316(2):175–180. doi: 10.1016/0014-5793(93)81210-q. [DOI] [PubMed] [Google Scholar]
  19. Ranganathan S., Davidson M. B. Effect of tumor necrosis factor-alpha on basal and insulin-stimulated glucose transport in cultured muscle and fat cells. Metabolism. 1996 Sep;45(9):1089–1094. doi: 10.1016/s0026-0495(96)90007-4. [DOI] [PubMed] [Google Scholar]
  20. Sakurai Y., Zhang X. J., Wolfe R. R. TNF directly stimulates glucose uptake and leucine oxidation and inhibits FFA flux in conscious dogs. Am J Physiol. 1996 May;270(5 Pt 1):E864–E872. doi: 10.1152/ajpendo.1996.270.5.E864. [DOI] [PubMed] [Google Scholar]
  21. Sakurai Y., Zhang X. U., Wolfe R. R. Short-term effects of tumor necrosis factor on energy and substrate metabolism in dogs. J Clin Invest. 1993 Jun;91(6):2437–2445. doi: 10.1172/JCI116478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Salter M., Knowles R. G., Moncada S. Widespread tissue distribution, species distribution and changes in activity of Ca(2+)-dependent and Ca(2+)-independent nitric oxide synthases. FEBS Lett. 1991 Oct 7;291(1):145–149. doi: 10.1016/0014-5793(91)81123-p. [DOI] [PubMed] [Google Scholar]
  23. Shangraw R. E., Jahoor F., Miyoshi H., Neff W. A., Stuart C. A., Herndon D. N., Wolfe R. R. Differentiation between septic and postburn insulin resistance. Metabolism. 1989 Oct;38(10):983–989. doi: 10.1016/0026-0495(89)90010-3. [DOI] [PubMed] [Google Scholar]
  24. Stephens J. M., Pekala P. H. Transcriptional repression of the C/EBP-alpha and GLUT4 genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. Regulations is coordinate and independent of protein synthesis. J Biol Chem. 1992 Jul 5;267(19):13580–13584. [PubMed] [Google Scholar]
  25. Stephens J. M., Pekala P. H. Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J Biol Chem. 1991 Nov 15;266(32):21839–21845. [PubMed] [Google Scholar]
  26. Tsakiridis T., McDowell H. E., Walker T., Downes C. P., Hundal H. S., Vranic M., Klip A. Multiple roles of phosphatidylinositol 3-kinase in regulation of glucose transport, amino acid transport, and glucose transporters in L6 skeletal muscle cells. Endocrinology. 1995 Oct;136(10):4315–4322. doi: 10.1210/endo.136.10.7664650. [DOI] [PubMed] [Google Scholar]
  27. Vandenabeele P., Declercq W., Beyaert R., Fiers W. Two tumour necrosis factor receptors: structure and function. Trends Cell Biol. 1995 Oct;5(10):392–399. doi: 10.1016/s0962-8924(00)89088-1. [DOI] [PubMed] [Google Scholar]
  28. Verdon C. P., Burton B. A., Prior R. L. Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP+ when the Griess reaction is used to assay for nitrite. Anal Biochem. 1995 Jan 20;224(2):502–508. doi: 10.1006/abio.1995.1079. [DOI] [PubMed] [Google Scholar]
  29. Westfall M. V., Sayeed M. M. Basal and insulin-stimulated skeletal muscle sugar transport in endotoxic and bacteremic rats. Am J Physiol. 1988 Apr;254(4 Pt 2):R673–R679. doi: 10.1152/ajpregu.1988.254.4.R673. [DOI] [PubMed] [Google Scholar]
  30. Williams G., Brown T., Becker L., Prager M., Giroir B. P. Cytokine-induced expression of nitric oxide synthase in C2C12 skeletal muscle myocytes. Am J Physiol. 1994 Oct;267(4 Pt 2):R1020–R1025. doi: 10.1152/ajpregu.1994.267.4.R1020. [DOI] [PubMed] [Google Scholar]
  31. Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zentella A., Manogue K., Cerami A. Cachectin/TNF-mediated lactate production in cultured myocytes is linked to activation of a futile substrate cycle. Cytokine. 1993 Sep;5(5):436–447. doi: 10.1016/1043-4666(93)90033-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES