Abstract
gamma-Aminobutyric acid is synthesized by glutamic acid decarboxylase (GAD), which has two forms, GAD65 and GAD67. Genomic clones coding mouse GAD67 (mGAD67) have been isolated. The restriction map of the overlapping clones covers a region of more than 45 kb of genomic DNA. The mGAD67 gene contains 16 translated exons in addition to an exon which is preferentially expressed in foetal brain. The rapid amplification of 5'-cDNA ends showed that mGAD67 gene transcripts have two different 5'-untranslated regions. Analysis of the genomic clones encompassing the 5'-exons revealed that the two transcripts arose from a single gene by alternative splicing using two different donor sites and a common acceptor. The exons were found 1.5 and 0.6 kb upstream of exon 1. The corresponding promoter regions of these exons have a number of putative regulatory elements, including Sp1- and Krox-24-binding sites. Analysis of mGAD67 transcripts demonstrated that each of the 5'-untranslated exons was expressed in mouse brain. In contrast, exon 0A, but not exon 0B, was expressed in mouse testis and pancreas. These results suggest that these transcripts may be regulated under the control of independent promoters.
Full Text
The Full Text of this article is available as a PDF (408.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bain G., Ramkumar T. P., Cheng J. M., Gottlieb D. I. Expression of the genes coding for glutamic acid decarboxylase in pluripotent cell lines. Brain Res Mol Brain Res. 1993 Jan;17(1-2):23–30. doi: 10.1016/0169-328x(93)90068-z. [DOI] [PubMed] [Google Scholar]
- Behar T., Schaffner A., Laing P., Hudson L., Komoly S., Barker J. Many spinal cord cells transiently express low molecular weight forms of glutamic acid decarboxylase during embryonic development. Brain Res Dev Brain Res. 1993 Apr 16;72(2):203–218. doi: 10.1016/0165-3806(93)90185-d. [DOI] [PubMed] [Google Scholar]
- Bu D. F., Tobin A. J. The exon-intron organization of the genes (GAD1 and GAD2) encoding two human glutamate decarboxylases (GAD67 and GAD65) suggests that they derive from a common ancestral GAD. Genomics. 1994 May 1;21(1):222–228. doi: 10.1006/geno.1994.1246. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Christy B., Nathans D. DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8737–8741. doi: 10.1073/pnas.86.22.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelhoff S., Grubin C. E., Karlsen A. E., Alder D. A., Foster D., Disteche C. M., Lernmark A. Mapping of glutamic acid decarboxylase (GAD) genes. Genomics. 1993 Jul;17(1):93–97. doi: 10.1006/geno.1993.1288. [DOI] [PubMed] [Google Scholar]
- Erlander M. G., Tillakaratne N. J., Feldblum S., Patel N., Tobin A. J. Two genes encode distinct glutamate decarboxylases. Neuron. 1991 Jul;7(1):91–100. doi: 10.1016/0896-6273(91)90077-d. [DOI] [PubMed] [Google Scholar]
- Erlander M. G., Tobin A. J. A transcriptional regulatory element of the gene encoding the 67,000-M(r) form of human glutamate decarboxylase is similar to a Drosophila regulatory element. J Neurochem. 1992 Jun;58(6):2182–2190. doi: 10.1111/j.1471-4159.1992.tb10962.x. [DOI] [PubMed] [Google Scholar]
- Faulkner-Jones B. E., Cram D. S., Kun J., Harrison L. C. Localization and quantitation of expression of two glutamate decarboxylase genes in pancreatic beta-cells and other peripheral tissues of mouse and rat. Endocrinology. 1993 Dec;133(6):2962–2972. doi: 10.1210/endo.133.6.8243324. [DOI] [PubMed] [Google Scholar]
- Gabrielsson B. G., Carmignac D. F., Flavell D. M., Robinson I. C. Steroid regulation of growth hormone (GH) receptor and GH-binding protein messenger ribonucleic acids in the rat. Endocrinology. 1995 Jan;136(1):209–217. doi: 10.1210/endo.136.1.7828533. [DOI] [PubMed] [Google Scholar]
- Janson L., Pettersson U. Cooperative interactions between transcription factors Sp1 and OTF-1. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4732–4736. doi: 10.1073/pnas.87.12.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julien J. F., Legay F., Dumas S., Tappaz M., Mallet J. Molecular cloning, expression and in situ hybridization of rat brain glutamic acid decarboxylase messenger RNA. Neurosci Lett. 1987 Jan 14;73(2):173–180. doi: 10.1016/0304-3940(87)90013-9. [DOI] [PubMed] [Google Scholar]
- Kadonaga J. T., Carner K. R., Masiarz F. R., Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987 Dec 24;51(6):1079–1090. doi: 10.1016/0092-8674(87)90594-0. [DOI] [PubMed] [Google Scholar]
- Katarova Z., Szabo G., Mugnaini E., Greenspan R. J. Molecular Identification of the 62 kd Form of Glutamic Acid Decarboxylase from the Mouse. Eur J Neurosci. 1990;2(3):190–202. doi: 10.1111/j.1460-9568.1990.tb00412.x. [DOI] [PubMed] [Google Scholar]
- Kaufman D. L., Erlander M. G., Clare-Salzler M., Atkinson M. A., Maclaren N. K., Tobin A. J. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest. 1992 Jan;89(1):283–292. doi: 10.1172/JCI115573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufman D. L., Houser C. R., Tobin A. J. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem. 1991 Feb;56(2):720–723. doi: 10.1111/j.1471-4159.1991.tb08211.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly C. D., Edwards Y., Johnstone A. P., Harfst E., Nógrádi A., Nussey S. S., Povey S., Carter N. D. Nucleotide sequence and chromosomal assignment of a cDNA encoding the large isoform of human glutamate decarboxylase. Ann Hum Genet. 1992 Jul;56(Pt 3):255–265. doi: 10.1111/j.1469-1809.1992.tb01150.x. [DOI] [PubMed] [Google Scholar]
- Kirkness E. F., Fraser C. M. A strong promoter element is located between alternative exons of a gene encoding the human gamma-aminobutyric acid-type A receptor beta 3 subunit (GABRB3). J Biol Chem. 1993 Feb 25;268(6):4420–4428. [PubMed] [Google Scholar]
- Kobayashi Y., Kaufman D. L., Tobin A. J. Glutamic acid decarboxylase cDNA: nucleotide sequence encoding an enzymatically active fusion protein. J Neurosci. 1987 Sep;7(9):2768–2772. doi: 10.1523/JNEUROSCI.07-09-02768.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanoix J., Belhumeur P., Lussier M., Royal A., Bravo R., Skup D. Regulated expression of Krox-24 and other serum-responsive genes during differentiation of P19 embryonal carcinoma cells. Cell Growth Differ. 1991 Aug;2(8):391–399. [PubMed] [Google Scholar]
- Laprade N., Soghomonian J. J. Differential regulation of mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) by dopamine receptors in the rat striatum. Brain Res Mol Brain Res. 1995 Dec 1;34(1):65–74. doi: 10.1016/0169-328x(95)00139-j. [DOI] [PubMed] [Google Scholar]
- Lee T. C., Shi Y., Schwartz R. J. Displacement of BrdUrd-induced YY1 by serum response factor activates skeletal alpha-actin transcription in embryonic myoblasts. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9814–9818. doi: 10.1073/pnas.89.20.9814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y., Camp S., Rachinsky T. L., Bongiorno C., Taylor P. Promoter elements and transcriptional control of the mouse acetylcholinesterase gene. J Biol Chem. 1993 Feb 15;268(5):3563–3572. [PubMed] [Google Scholar]
- Mahendroo M. S., Mendelson C. R., Simpson E. R. Tissue-specific and hormonally controlled alternative promoters regulate aromatase cytochrome P450 gene expression in human adipose tissue. J Biol Chem. 1993 Sep 15;268(26):19463–19470. [PubMed] [Google Scholar]
- Martin D. L., Martin S. B., Wu S. J., Espina N. Regulatory properties of brain glutamate decarboxylase (GAD): the apoenzyme of GAD is present principally as the smaller of two molecular forms of GAD in brain. J Neurosci. 1991 Sep;11(9):2725–2731. doi: 10.1523/JNEUROSCI.11-09-02725.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan Y. X., Xu J., Pasternak G. W. Structure and characterization of the gene encoding a mouse kappa3-related opioid receptor. Gene. 1996 Jun 1;171(2):255–260. doi: 10.1016/0378-1119(95)00890-x. [DOI] [PubMed] [Google Scholar]
- Perkins N. D., Edwards N. L., Duckett C. S., Agranoff A. B., Schmid R. M., Nabel G. J. A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. EMBO J. 1993 Sep;12(9):3551–3558. doi: 10.1002/j.1460-2075.1993.tb06029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Persson H., Pelto-Huikko M., Metsis M., Söder O., Brene S., Skog S., Hökfelt T., Ritzén E. M. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells. Mol Cell Biol. 1990 Sep;10(9):4701–4711. doi: 10.1128/mcb.10.9.4701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pospelov V. A., Pospelova T. V., Julien J. P. AP-1 and Krox-24 transcription factors activate the neurofilament light gene promoter in P19 embryonal carcinoma cells. Cell Growth Differ. 1994 Feb;5(2):187–196. [PubMed] [Google Scholar]
- Ren H., Stiles G. L. Posttranscriptional mRNA processing as a mechanism for regulation of human A1 adenosine receptor expression. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4864–4866. doi: 10.1073/pnas.91.11.4864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts E., Kuriyama K. Biochemical-physiological correlations in studies of the gamma-aminobutyric acid system. Brain Res. 1968 Apr;8(1):1–35. doi: 10.1016/0006-8993(68)90170-4. [DOI] [PubMed] [Google Scholar]
- Roy N., Laflamme G., Raymond V. 5' untranslated sequences modulate rapid mRNA degradation mediated by 3' AU-rich element in v-/c-fos recombinants. Nucleic Acids Res. 1992 Nov 11;20(21):5753–5762. doi: 10.1093/nar/20.21.5753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwarzer C., Sperk G. Hippocampal granule cells express glutamic acid decarboxylase-67 after limbic seizures in the rat. Neuroscience. 1995 Dec;69(3):705–709. doi: 10.1016/0306-4522(95)00348-m. [DOI] [PubMed] [Google Scholar]
- Segovia J., Lawless G. M., Tillakaratne N. J., Brenner M., Tobin A. J. Cyclic AMP decreases the expression of a neuronal marker (GAD67) and increases the expression of an astroglial marker (GFAP) in C6 cells. J Neurochem. 1994 Oct;63(4):1218–1225. doi: 10.1046/j.1471-4159.1994.63041218.x. [DOI] [PubMed] [Google Scholar]
- Soghomonian J. J., Pedneault S., Audet G., Parent A. Increased glutamate decarboxylase mRNA levels in the striatum and pallidum of MPTP-treated primates. J Neurosci. 1994 Oct;14(10):6256–6265. doi: 10.1523/JNEUROSCI.14-10-06256.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens R. M., Schneider T. D. Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J Mol Biol. 1992 Dec 20;228(4):1124–1136. doi: 10.1016/0022-2836(92)90320-j. [DOI] [PubMed] [Google Scholar]
- Szabo G., Katarova Z., Greenspan R. Distinct protein forms are produced from alternatively spliced bicistronic glutamic acid decarboxylase mRNAs during development. Mol Cell Biol. 1994 Nov;14(11):7535–7545. doi: 10.1128/mcb.14.11.7535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takenaka M., Bagnasco S. M., Preston A. S., Uchida S., Yamauchi A., Kwon H. M., Handler J. S. The canine betaine gamma-amino-n-butyric acid transporter gene: diverse mRNA isoforms are regulated by hypertonicity and are expressed in a tissue-specific manner. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1072–1076. doi: 10.1073/pnas.92.4.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas M., Makeh I., Briand P., Kahn A., Skala H. Determinants of the brain-specific expression of the rat aldolase C gene: ex vivo and in vivo analysis. Eur J Biochem. 1993 Nov 15;218(1):143–151. doi: 10.1111/j.1432-1033.1993.tb18360.x. [DOI] [PubMed] [Google Scholar]
- Waters C. M., Hancock D. C., Evan G. I. Identification and characterisation of the egr-1 gene product as an inducible, short-lived, nuclear phosphoprotein. Oncogene. 1990 May;5(5):669–674. [PubMed] [Google Scholar]
- Yang X., Fyodorov D., Deneris E. S. Transcriptional analysis of acetylcholine receptor alpha 3 gene promoter motifs that bind Sp1 and AP2. J Biol Chem. 1995 Apr 14;270(15):8514–8520. doi: 10.1074/jbc.270.15.8514. [DOI] [PubMed] [Google Scholar]