Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jan 1;329(Pt 1):65–71. doi: 10.1042/bj3290065

Expression of the Schwanniomyces occidentalis SWA2 amylase in Saccharomyces cerevisiae: role of N-glycosylation on activity, stability and secretion.

E Yáñez 1, T A Carmona 1, M Tiemblo 1, A Jiménez 1, M Fernández-Lobato 1
PMCID: PMC1219014  PMID: 9405276

Abstract

The role of N-linked glycosylation on the biological activity of Schwanniomyces occidentalis SWA2 alpha-amylase, as expressed in Saccharomyces cerevisiae, was analysed by site-directed mutagenesis of the two potential N-glycosylation sites, Asn-134 and Asn-229. These residues were replaced by Ala or Gly individually or in various combinations and the effects on the activity, secretion and thermal stability of the enzyme were studied. Any Asn-229 substitution caused a drastic decrease in activity levels of the extracellular enzyme. In contrast, substitutions of Asn-134 had little or no effect. The use of antibodies showed that alpha-amylase was secreted in all the mutants tested, although those containing substitutions at Asn-229 seemed to have a lower rate of synthesis and/or higher degradation than the wild-type strain. alpha-Amylases with substitution at Asn-229 had a 2 kDa lower molecular mass than the wild-type protein, as did the wild-type protein itself after treatment with endoglycosidase F. These findings indicate that Asn-229 is the single glycosylated residue in SWA2. Thermostability analysis of both purified wild-type (T50=50 degrees C, where T50 is the temperature resulting in 50% loss of activity) and mutant enzymes indicated that removal of carbohydrate from the 229 position results in a decrease of approx. 3 degrees C in the T50 of the enzyme. The Gly-229 mutation does not change the apparent affinity of the enzyme for starch (Km) but decreases to 1/22 its apparent catalytic efficiency (kcat/Km). These results therefore indicate that glycosylation at the 229 position has an important role in the extracellular activity levels, kinetics and stability of the Sw. occidentalis SWA2 alpha-amylase in both its wild-type and mutant forms.

Full Text

The Full Text of this article is available as a PDF (409.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abarca D., Fernández-Lobato M., Claros M. G., Jiménez A. Isolation and expression in Saccharomyces cerevisiae of a gene encoding an alpha-amylase from Schwanniomyces castellii. FEBS Lett. 1989 Sep 25;255(2):455–459. doi: 10.1016/0014-5793(89)81144-5. [DOI] [PubMed] [Google Scholar]
  2. Abarca D., Fernández-Lobato M., del Pozo L., Jiménez A. Isolation of a new gene (SW A2) encoding an alpha-amylase from Schwanniomyces occidentalis and its expression in Saccharomyces cerevisiae. FEBS Lett. 1991 Feb 11;279(1):41–44. doi: 10.1016/0014-5793(91)80245-x. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Meyer E., Jr, Powers J. C. Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry. 1989 Mar 7;28(5):1951–1963. doi: 10.1021/bi00431a001. [DOI] [PubMed] [Google Scholar]
  4. Braun C., Brayer G. D., Withers S. G. Mechanism-based inhibition of yeast alpha-glucosidase and human pancreatic alpha-amylase by a new class of inhibitors. 2-Deoxy-2,2-difluoro-alpha-glycosides. J Biol Chem. 1995 Nov 10;270(45):26778–26781. doi: 10.1074/jbc.270.45.26778. [DOI] [PubMed] [Google Scholar]
  5. Broach J. R., Strathern J. N., Hicks J. B. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene. 1979 Dec;8(1):121–133. doi: 10.1016/0378-1119(79)90012-x. [DOI] [PubMed] [Google Scholar]
  6. Brosnan M. P., Kelly C. T., Fogarty W. M. Investigation of the mechanisms of irreversible thermoinactivation of Bacillus stearothermophilus alpha-amylase. Eur J Biochem. 1992 Jan 15;203(1-2):225–231. doi: 10.1111/j.1432-1033.1992.tb19850.x. [DOI] [PubMed] [Google Scholar]
  7. Caro L. H., Ohali A., Gorden P., Collier E. Mutational analysis of the NH2-terminal glycosylation sites of the insulin receptor alpha-subunit. Diabetes. 1994 Feb;43(2):240–246. doi: 10.2337/diab.43.2.240. [DOI] [PubMed] [Google Scholar]
  8. Chen W., Hughes D. E., Bailey J. E. Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. Biotechnol Prog. 1994 May-Jun;10(3):308–313. doi: 10.1021/bp00027a011. [DOI] [PubMed] [Google Scholar]
  9. Claros M. G., Abarca D., Fernández-Lobato M., Jiménez A. Molecular structure of the SWA2 gene encoding an AMY1-related alpha-amylase from Schwanniomyces occidentalis. Curr Genet. 1993 Jul-Aug;24(1-2):75–83. doi: 10.1007/BF00324668. [DOI] [PubMed] [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doan D. N., Fincher G. B. Differences in the thermostabilities of barley (1----3,1----4)-beta-glucanases are only partly determined by N-glycosylation. FEBS Lett. 1992 Sep 14;309(3):265–271. doi: 10.1016/0014-5793(92)80786-g. [DOI] [PubMed] [Google Scholar]
  12. Driscoll P. C., Cyster J. G., Campbell I. D., Williams A. F. Structure of domain 1 of rat T lymphocyte CD2 antigen. Nature. 1991 Oct 24;353(6346):762–765. doi: 10.1038/353762a0. [DOI] [PubMed] [Google Scholar]
  13. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gavel Y., von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 1990 Apr;3(5):433–442. doi: 10.1093/protein/3.5.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haraguchi M., Yamashiro S., Furukawa K., Takamiya K., Shiku H., Furukawa K. The effects of the site-directed removal of N-glycosylation sites from beta-1,4-N-acetylgalactosaminyltransferase on its function. Biochem J. 1995 Nov 15;312(Pt 1):273–280. doi: 10.1042/bj3120273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herscovics A., Orlean P. Glycoprotein biosynthesis in yeast. FASEB J. 1993 Apr 1;7(6):540–550. doi: 10.1096/fasebj.7.6.8472892. [DOI] [PubMed] [Google Scholar]
  17. Holst B., Bruun A. W., Kielland-Brandt M. C., Winther J. R. Competition between folding and glycosylation in the endoplasmic reticulum. EMBO J. 1996 Jul 15;15(14):3538–3546. [PMC free article] [PubMed] [Google Scholar]
  18. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  19. Imperiali B., Rickert K. W. Conformational implications of asparagine-linked glycosylation. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):97–101. doi: 10.1073/pnas.92.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Joao H. C., Scragg I. G., Dwek R. A. Effects of glycosylation on protein conformation and amide proton exchange rates in RNase B. FEBS Lett. 1992 Aug 3;307(3):343–346. doi: 10.1016/0014-5793(92)80709-p. [DOI] [PubMed] [Google Scholar]
  21. Just I., Selzer J., Wilm M., von Eichel-Streiber C., Mann M., Aktories K. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature. 1995 Jun 8;375(6531):500–503. doi: 10.1038/375500a0. [DOI] [PubMed] [Google Scholar]
  22. Kern G., Kern D., Jaenicke R., Seckler R. Kinetics of folding and association of differently glycosylated variants of invertase from Saccharomyces cerevisiae. Protein Sci. 1993 Nov;2(11):1862–1868. doi: 10.1002/pro.5560021108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kern G., Schülke N., Schmid F. X., Jaenicke R. Stability, quaternary structure, and folding of internal, external, and core-glycosylated invertase from yeast. Protein Sci. 1992 Jan;1(1):120–131. doi: 10.1002/pro.5560010112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kingsman S. M., Cousens D., Stanway C. A., Chambers A., Wilson M., Kingsman A. J. High-efficiency yeast expression vectors based on the promoter of the phosphoglycerate kinase gene. Methods Enzymol. 1990;185:329–341. doi: 10.1016/0076-6879(90)85029-n. [DOI] [PubMed] [Google Scholar]
  25. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  26. Kwon K. S., Song M., Yu M. H. Purification and characterization of alpha 1-antitrypsin secreted by recombinant yeast Saccharomyces diastaticus. J Biotechnol. 1995 Oct 16;42(3):191–195. doi: 10.1016/0168-1656(95)00079-6. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Leconte I., Auzan C., Debant A., Rossi B., Clauser E. N-linked oligosaccharide chains of the insulin receptor beta subunit are essential for transmembrane signaling. J Biol Chem. 1992 Aug 25;267(24):17415–17423. [PubMed] [Google Scholar]
  29. Matthews C. R. Pathways of protein folding. Annu Rev Biochem. 1993;62:653–683. doi: 10.1146/annurev.bi.62.070193.003253. [DOI] [PubMed] [Google Scholar]
  30. Meldgaard M., Svendsen I. Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1,3-1,4)-beta-glucanases secreted from yeast. Microbiology. 1994 Jan;140(Pt 1):159–166. doi: 10.1099/13500872-140-1-159. [DOI] [PubMed] [Google Scholar]
  31. Mer G., Hietter H., Lefèvre J. F. Stabilization of proteins by glycosylation examined by NMR analysis of a fucosylated proteinase inhibitor. Nat Struct Biol. 1996 Jan;3(1):45–53. doi: 10.1038/nsb0196-45. [DOI] [PubMed] [Google Scholar]
  32. O K., Hill J. S., Pritchard P. H. Role of N-linked glycosylation of lecithin:cholesterol acyltransferase in lipoprotein substrate specificity. Biochim Biophys Acta. 1995 Jan 20;1254(2):193–197. doi: 10.1016/0005-2760(94)00183-y. [DOI] [PubMed] [Google Scholar]
  33. Paulson J. C. Glycoproteins: what are the sugar chains for? Trends Biochem Sci. 1989 Jul;14(7):272–276. doi: 10.1016/0968-0004(89)90062-5. [DOI] [PubMed] [Google Scholar]
  34. Qian M., Haser R., Buisson G., Duée E., Payan F. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-A resolution. Biochemistry. 1994 May 24;33(20):6284–6294. doi: 10.1021/bi00186a031. [DOI] [PubMed] [Google Scholar]
  35. Qian M., Haser R., Payan F. Carbohydrate binding sites in a pancreatic alpha-amylase-substrate complex, derived from X-ray structure analysis at 2.1 A resolution. Protein Sci. 1995 Apr;4(4):747–755. doi: 10.1002/pro.5560040414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rademacher T. W., Parekh R. B., Dwek R. A. Glycobiology. Annu Rev Biochem. 1988;57:785–838. doi: 10.1146/annurev.bi.57.070188.004033. [DOI] [PubMed] [Google Scholar]
  37. Riederer M. A., Hinnen A. Removal of N-glycosylation sites of the yeast acid phosphatase severely affects protein folding. J Bacteriol. 1991 Jun;173(11):3539–3546. doi: 10.1128/jb.173.11.3539-3546.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rispeter K., Lu M., Zibert A., Wiese M., Mendes de Oliveira J., Roggendorf M. A suggested extension of the HCV ISDR does not alter our former conclusions on its predictive value for IFN response. J Hepatol. 1999 Jun;30(6):1163–1164. doi: 10.1016/s0168-8278(99)80276-1. [DOI] [PubMed] [Google Scholar]
  39. Romanos M. A., Scorer C. A., Clare J. J. Foreign gene expression in yeast: a review. Yeast. 1992 Jun;8(6):423–488. doi: 10.1002/yea.320080602. [DOI] [PubMed] [Google Scholar]
  40. Rudd P. M., Joao H. C., Coghill E., Fiten P., Saunders M. R., Opdenakker G., Dwek R. A. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry. 1994 Jan 11;33(1):17–22. doi: 10.1021/bi00167a003. [DOI] [PubMed] [Google Scholar]
  41. Sadhukhan R., Sen I. Different glycosylation requirements for the synthesis of enzymatically active angiotensin-converting enzyme in mammalian cells and yeast. J Biol Chem. 1996 Mar 15;271(11):6429–6434. doi: 10.1074/jbc.271.11.6429. [DOI] [PubMed] [Google Scholar]
  42. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  43. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Serrano L., Neira J. L., Sancho J., Fersht A. R. Effect of alanine versus glycine in alpha-helices on protein stability. Nature. 1992 Apr 2;356(6368):453–455. doi: 10.1038/356453a0. [DOI] [PubMed] [Google Scholar]
  45. Shaanan B., Lis H., Sharon N. Structure of a legume lectin with an ordered N-linked carbohydrate in complex with lactose. Science. 1991 Nov 8;254(5033):862–866. doi: 10.1126/science.1948067. [DOI] [PubMed] [Google Scholar]
  46. Strasser A. W., Selk R., Dohmen R. J., Niermann T., Bielefeld M., Seeboth P., Tu G. H., Hollenberg C. P. Analysis of the alpha-amylase gene of Schwanniomyces occidentalis and the secretion of its gene product in transformants of different yeast genera. Eur J Biochem. 1989 Oct 1;184(3):699–706. doi: 10.1111/j.1432-1033.1989.tb15069.x. [DOI] [PubMed] [Google Scholar]
  47. Swift H. J., Brady L., Derewenda Z. S., Dodson E. J., Dodson G. G., Turkenburg J. P., Wilkinson A. J. Structure and molecular model refinement of Aspergillus oryzae (TAKA) alpha-amylase: an application of the simulated-annealing method. Acta Crystallogr B. 1991 Aug 1;47(Pt 4):535–544. doi: 10.1107/s0108768191001970. [DOI] [PubMed] [Google Scholar]
  48. Terashima M., Kubo A., Suzawa M., Itoh Y., Katoh S. The roles of the N-linked carbohydrate chain of rice alpha-amylase in thermostability and enzyme kinetics. Eur J Biochem. 1994 Nov 15;226(1):249–254. doi: 10.1111/j.1432-1033.1994.tb20048.x. [DOI] [PubMed] [Google Scholar]
  49. Velan B., Kronman C., Ordentlich A., Flashner Y., Leitner M., Cohen S., Shafferman A. N-glycosylation of human acetylcholinesterase: effects on activity, stability and biosynthesis. Biochem J. 1993 Dec 15;296(Pt 3):649–656. doi: 10.1042/bj2960649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wyss D. F., Choi J. S., Li J., Knoppers M. H., Willis K. J., Arulanandam A. R., Smolyar A., Reinherz E. L., Wagner G. Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science. 1995 Sep 1;269(5228):1273–1278. doi: 10.1126/science.7544493. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES