Abstract
We previously demonstrated that the Escherichia coli F0F1-ATP synthase mutation, gammaM23K, caused increased energy of interaction between gamma- and beta-subunits which was correlated to inefficient coupling between catalysis and transport [Al-Shawi, Ketchum and Nakamoto (1997) J. Biol. Chem. 272, 2300-2306]. Based on these results and the X-ray crystallographic structure of bovine F1-ATPase [Abrahams, Leslie, Lutter and Walker (1994) Nature (London) 370, 621-628] gammaM23K is believed to form an ionized hydrogen bond with betaGlu-381 in the conserved beta380DELSEED386 segment. In this report, we further test the role of gamma-beta-subunit interactions by introducing a series of substitutions for betaGlu-381 and gammaArg-242, the residue which forms a hydrogen bond with betaGlu-381 in the wild-type enzyme. betaE381A, D, and Q were able to restore efficient coupling when co-expressed with gammaM23K. All three mutations reversed the increased transition state thermodynamic parameters for steady state ATP hydrolysis caused by gammaM23K. betaE381K by itself caused inefficient coupling, but opposite from the effect of gammaM23K, the transition state thermodynamic parameters were lower than wild-type. These results suggest that the betaE381K mutation perturbs the gamma-beta-subunit interaction and the local conformation of the beta380DELSEED386 segment in a specific way that disrupts the communication of coupling information between transport and catalysis. betaE381A, L, K, and R, and gammaR242L and E mutations perturbed enzyme assembly and stability to varying degrees. These results provide functional evidence that the beta380DELSEED386 segment and its interactions with the gamma-subunit are involved in the mechanism of coupling.
Full Text
The Full Text of this article is available as a PDF (464.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahams J. P., Buchanan S. K., Van Raaij M. J., Fearnley I. M., Leslie A. G., Walker J. E. The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9420–9424. doi: 10.1073/pnas.93.18.9420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
- Aggeler R., Haughton M. A., Capaldi R. A. Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences. J Biol Chem. 1995 Apr 21;270(16):9185–9191. doi: 10.1074/jbc.270.16.9185. [DOI] [PubMed] [Google Scholar]
- Aggeler R., Ogilvie I., Capaldi R. A. Rotation of a gamma-epsilon subunit domain in the Escherichia coli F1F0-ATP synthase complex. The gamma-epsilon subunits are essentially randomly distributed relative to the alpha3beta3delta domain in the intact complex. J Biol Chem. 1997 Aug 1;272(31):19621–19624. doi: 10.1074/jbc.272.31.19621. [DOI] [PubMed] [Google Scholar]
- Al-Shawi M. K., Ketchum C. J., Nakamoto R. K. Energy coupling, turnover, and stability of the F0F1 ATP synthase are dependent on the energy of interaction between gamma and beta subunits. J Biol Chem. 1997 Jan 24;272(4):2300–2306. doi: 10.1074/jbc.272.4.2300. [DOI] [PubMed] [Google Scholar]
- Al-Shawi M. K., Ketchum C. J., Nakamoto R. K. The Escherichia coli FOF1 gammaM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway. Biochemistry. 1997 Oct 21;36(42):12961–12969. doi: 10.1021/bi971478r. [DOI] [PubMed] [Google Scholar]
- Al-Shawi M. K., Nakamoto R. K. Mechanism of energy coupling in the FOF1-ATP synthase: the uncoupling mutation, gammaM23K, disrupts the use of binding energy to drive catalysis. Biochemistry. 1997 Oct 21;36(42):12954–12960. doi: 10.1021/bi971477z. [DOI] [PubMed] [Google Scholar]
- Boyer P. D. The ATP synthase--a splendid molecular machine. Annu Rev Biochem. 1997;66:717–749. doi: 10.1146/annurev.biochem.66.1.717. [DOI] [PubMed] [Google Scholar]
- Bullough D. A., Ceccarelli E. A., Verburg J. G., Allison W. S. Localization of sites modified during inactivation of the bovine heart mitochondrial F1-ATPase by quinacrine mustard using [3H]aniline as a probe. J Biol Chem. 1989 Jun 5;264(16):9155–9163. [PubMed] [Google Scholar]
- Capaldi R. A., Aggeler R., Turina P., Wilkens S. Coupling between catalytic sites and the proton channel in F1F0-type ATPases. Trends Biochem Sci. 1994 Jul;19(7):284–289. doi: 10.1016/0968-0004(94)90006-x. [DOI] [PubMed] [Google Scholar]
- Cross R. L., Duncan T. M. Subunit rotation in F0F1-ATP synthases as a means of coupling proton transport through F0 to the binding changes in F1. J Bioenerg Biomembr. 1996 Oct;28(5):403–408. doi: 10.1007/BF02113981. [DOI] [PubMed] [Google Scholar]
- Deckers-Hebestreit G., Altendorf K. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annu Rev Microbiol. 1996;50:791–824. doi: 10.1146/annurev.micro.50.1.791. [DOI] [PubMed] [Google Scholar]
- Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
- Duncan T. M., Bulygin V. V., Zhou Y., Hutcheon M. L., Cross R. L. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10964–10968. doi: 10.1073/pnas.92.24.10964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duncan T. M., Zhou Y., Bulygin V. V., Hutcheon M. L., Cross R. L. Probing interactions of the Escherichia coli F0F1 ATP synthase beta and gamma subunits with disulphide cross-links. Biochem Soc Trans. 1995 Nov;23(4):736–741. doi: 10.1042/bst0230736. [DOI] [PubMed] [Google Scholar]
- Dunn S. D. A barrel in the stalk. Nat Struct Biol. 1995 Nov;2(11):915–918. doi: 10.1038/nsb1195-915. [DOI] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
- Feng Z., Aggeler R., Haughton M. A., Capaldi R. A. Conformational changes in the Escherichia coli ATP synthase (ECF1F0) monitored by nucleotide-dependent differences in the reactivity of Cys-87 of the gamma subunit in the mutant betaGlu-381 --> Ala. J Biol Chem. 1996 Jul 26;271(30):17986–17989. doi: 10.1074/jbc.271.30.17986. [DOI] [PubMed] [Google Scholar]
- Fillingame R. H., Girvin M. E., Zhang Y. Correlations of structure and function in subunit c of Escherichia coli F0F1 ATP synthase. Biochem Soc Trans. 1995 Nov;23(4):760–766. doi: 10.1042/bst0230760. [DOI] [PubMed] [Google Scholar]
- Foster D. L., Fillingame R. H. Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. J Biol Chem. 1982 Feb 25;257(4):2009–2015. [PubMed] [Google Scholar]
- Futai M., Sternweis P. C., Heppel L. A. Purification and properties of reconstitutively active and inactive adenosinetriphosphatase from Escherichia coli. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2725–2729. doi: 10.1073/pnas.71.7.2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grüber G., Capaldi R. A. The trapping of different conformations of the Escherichia coli F1 ATPase by disulfide bond formation. Effect on nucleotide binding affinities of the catalytic sites. J Biol Chem. 1996 Dec 20;271(51):32623–32628. doi: 10.1074/jbc.271.51.32623. [DOI] [PubMed] [Google Scholar]
- Hermolin J., Fillingame R. H. H+-ATPase activity of Escherichia coli F1F0 is blocked after reaction of dicyclohexylcarbodiimide with a single proteolipid (subunit c) of the F0 complex. J Biol Chem. 1989 Mar 5;264(7):3896–3903. [PubMed] [Google Scholar]
- Jeanteur-De Beukelaer C., Omote H., Iwamoto-Kihara A., Maeda M., Futai M. Beta-gamma subunit interaction is required for catalysis by H(+)-ATPase (ATP synthase). Beta subunit amino acid replacements suppress a gamma subunit mutation having a long unrelated carboxyl terminus. J Biol Chem. 1995 Sep 29;270(39):22850–22854. doi: 10.1074/jbc.270.39.22850. [DOI] [PubMed] [Google Scholar]
- Klionsky D. J., Brusilow W. S., Simoni R. D. In vivo evidence for the role of the epsilon subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli. J Bacteriol. 1984 Dec;160(3):1055–1060. doi: 10.1128/jb.160.3.1055-1060.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee R. S., Pagan J., Satre M., Vignais P. V., Senior A. E. Identification of a mutation in Escherichia coli F1-ATPase beta-subunit conferring resistance to aurovertin. FEBS Lett. 1989 Aug 14;253(1-2):269–272. doi: 10.1016/0014-5793(89)80973-1. [DOI] [PubMed] [Google Scholar]
- Moriyama Y., Iwamoto A., Hanada H., Maeda M., Futai M. One-step purification of Escherichia coli H(+)-ATPase (F0F1) and its reconstitution into liposomes with neurotransmitter transporters. J Biol Chem. 1991 Nov 25;266(33):22141–22146. [PubMed] [Google Scholar]
- Nakamoto R. K., Maeda M., Futai M. The gamma subunit of the Escherichia coli ATP synthase. Mutations in the carboxyl-terminal region restore energy coupling to the amino-terminal mutant gamma Met-23-->Lys. J Biol Chem. 1993 Jan 15;268(2):867–872. [PubMed] [Google Scholar]
- Nakamoto R. K. Mechanisms of active transport in the FOF1 ATP synthase. J Membr Biol. 1996 May;151(2):101–111. doi: 10.1007/s002329900061. [DOI] [PubMed] [Google Scholar]
- Nakamoto R. K., al-Shawi M. K., Futai M. The ATP synthase gamma subunit. Suppressor mutagenesis reveals three helical regions involved in energy coupling. J Biol Chem. 1995 Jun 9;270(23):14042–14046. doi: 10.1074/jbc.270.23.14042. [DOI] [PubMed] [Google Scholar]
- Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
- Penefsky H. S., Cross R. L. Structure and mechanism of FoF1-type ATP synthases and ATPases. Adv Enzymol Relat Areas Mol Biol. 1991;64:173–214. doi: 10.1002/9780470123102.ch4. [DOI] [PubMed] [Google Scholar]
- Sabbert D., Engelbrecht S., Junge W. Intersubunit rotation in active F-ATPase. Nature. 1996 Jun 13;381(6583):623–625. doi: 10.1038/381623a0. [DOI] [PubMed] [Google Scholar]
- Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
- Shin K., Nakamoto R. K., Maeda M., Futai M. F0F1-ATPase gamma subunit mutations perturb the coupling between catalysis and transport. J Biol Chem. 1992 Oct 15;267(29):20835–20839. [PubMed] [Google Scholar]
- Takeyama M., Ihara K., Moriyama Y., Noumi T., Ida K., Tomioka N., Itai A., Maeda M., Futai M. The glycine-rich sequence of the beta subunit of Escherichia coli H(+)-ATPase is important for activity. J Biol Chem. 1990 Dec 5;265(34):21279–21284. [PubMed] [Google Scholar]
- al-Shawi M. K., Parsonage D., Senior A. E. Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli. Implications regarding the nature of energy coupling by F1-ATPases. J Biol Chem. 1990 Mar 15;265(8):4402–4410. [PubMed] [Google Scholar]
- al-Shawi M. K., Senior A. E. Catalytic sites of Escherichia coli F1-ATPase. Characterization of unisite catalysis at varied pH. Biochemistry. 1992 Jan 28;31(3):878–885. doi: 10.1021/bi00118a033. [DOI] [PubMed] [Google Scholar]
- van Raaij M. J., Abrahams J. P., Leslie A. G., Walker J. E. The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6913–6917. doi: 10.1073/pnas.93.14.6913. [DOI] [PMC free article] [PubMed] [Google Scholar]