Abstract
The cell nucleus has been identified as a location to which several arachidonic acid-metabolizing enzymes are located in stimulated cells. However, little information exists describing the distribution of arachidonate-containing phospholipids associated with the nucleus or the control of their composition. In this study, nuclei isolated from human monocyte-like THP-1 cells were found to have a distribution of arachidonyl-phospholipids which is markedly different from that of other cellular membranes. THP-1 nuclei which contained 22% of total cellular arachidonate, showed a near equal distribution of arachidonate in 1-acyl-2-arachidonoyl-glycero-3-phosphocholine, 1-acyl-2-arachidonyl-glycero-3-phosphoethanolamine, 1-acyl-2-arachidonoyl-glycero-3-phosphoinositol and 1-alk-1-enyl-2-arachidonoyl-glycero-3-phosphoethanolamine molecular species. In contrast in non-nuclear membranes, arachidonate was located primarily in 1-alk-1-enyl-2-arachidonoyl-glycero-3-phosphoethanolamine molecular species which accounted for approximately half of the arachidonate in all non-nuclear phospholipids. Isolated nuclei were incapable of initially acylating arachidonic acid into their phospholipids in the absence of cellular cytosol. However, they were capable of efficiently remodelling existing arachidonate between phospholipid classes and subclasses. Isolated nuclei contained 25-30% of the cellular activity of CoA-independent transacylase, the key enzyme responsible for arachidonate-phospholipid remodelling. This enzyme is also critical in the control of arachidonate availability following cell stimulation. Given that the cellular distribution of arachidonate is such that nuclei are enriched in donor substrates for the CoA-independent transacylase reaction, that non-nuclear membranes are enriched in acceptor substrates and that nuclei have the enzymatic machinery to remodel arachidonate efficiently, these results suggest that CoA-independent transacylase may be responsible for the remodelling of arachidonate not only between different phospholipid species within the same organelles but also between different sub-cellular compartments.
Full Text
The Full Text of this article is available as a PDF (440.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bakken A. M., Farstad M. Identical subcellular distribution of palmitoyl-CoA and arachidonoyl-CoA synthetase activities in human blood platelets. Biochem J. 1989 Jul 1;261(1):71–76. doi: 10.1042/bj2610071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balsinde J., Barbour S. E., Bianco I. D., Dennis E. A. Arachidonic acid mobilization in P388D1 macrophages is controlled by two distinct Ca(2+)-dependent phospholipase A2 enzymes. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11060–11064. doi: 10.1073/pnas.91.23.11060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balsinde J., Bianco I. D., Ackermann E. J., Conde-Frieboes K., Dennis E. A. Inhibition of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8527–8531. doi: 10.1073/pnas.92.18.8527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balsinde J., Dennis E. A. Distinct roles in signal transduction for each of the phospholipase A2 enzymes present in P388D1 macrophages. J Biol Chem. 1996 Mar 22;271(12):6758–6765. doi: 10.1074/jbc.271.12.6758. [DOI] [PubMed] [Google Scholar]
- Barbour S. E., Dennis E. A. Antisense inhibition of group II phospholipase A2 expression blocks the production of prostaglandin E2 by P388D1 cells. J Biol Chem. 1993 Oct 15;268(29):21875–21882. [PubMed] [Google Scholar]
- Brock T. G., Paine R., 3rd, Peters-Golden M. Localization of 5-lipoxygenase to the nucleus of unstimulated rat basophilic leukemia cells. J Biol Chem. 1994 Sep 2;269(35):22059–22066. [PubMed] [Google Scholar]
- Capriotti A. M., Furth E. E., Arrasmith M. E., Laposata M. Arachidonate released upon agonist stimulation preferentially originates from arachidonate most recently incorporated into nuclear membrane phospholipids. J Biol Chem. 1988 Jul 15;263(20):10029–10034. [PubMed] [Google Scholar]
- Chilton F. H., Fonteh A. N., Sung C. M., Hickey D. M., Torphy T. J., Mayer R. J., Marshall L. A., Heravi J. D., Winkler J. D. Inhibitors of CoA-independent transacylase block the movement of arachidonate into 1-ether-linked phospholipids of human neutrophils. Biochemistry. 1995 Apr 25;34(16):5403–5410. doi: 10.1021/bi00016a011. [DOI] [PubMed] [Google Scholar]
- Chilton F. H., Hadley J. S., Murphy R. C. Incorporation of arachidonic acid into 1-acyl-2-lyso-sn-glycero-3-phosphocholine of the human neutrophil. Biochim Biophys Acta. 1987 Jan 13;917(1):48–56. doi: 10.1016/0005-2760(87)90282-7. [DOI] [PubMed] [Google Scholar]
- Chilton F. H., Murphy R. C. Remodeling of arachidonate-containing phosphoglycerides within the human neutrophil. J Biol Chem. 1986 Jun 15;261(17):7771–7777. [PubMed] [Google Scholar]
- Chilton F. H., Murphy R. C. Stimulated production and natural occurrence of 1,2-diarachidonoylglycerophosphocholine in human neutrophils. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1126–1133. doi: 10.1016/0006-291x(87)91554-3. [DOI] [PubMed] [Google Scholar]
- Chilton F. H. Separation and characterization of arachidonate-containing phosphoglycerides. Methods Enzymol. 1990;187:157–167. doi: 10.1016/0076-6879(90)87021-t. [DOI] [PubMed] [Google Scholar]
- Colard O., Breton M., Bereziat G. Arachidonate mobilization in diacyl, alkylacyl and alkenylacyl phospholipids on stimulation of rat platelets by thrombin and the Ca2+ ionophore A23187. Biochem J. 1986 Feb 1;233(3):691–695. doi: 10.1042/bj2330691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fonteh A. N., Bass D. A., Marshall L. A., Seeds M., Samet J. M., Chilton F. H. Evidence that secretory phospholipase A2 plays a role in arachidonic acid release and eicosanoid biosynthesis by mast cells. J Immunol. 1994 Jun 1;152(11):5438–5446. [PubMed] [Google Scholar]
- Fonteh A. N., Chilton F. H. Mobilization of different arachidonate pools and their roles in the generation of leukotrienes and free arachidonic acid during immunologic activation of mast cells. J Immunol. 1993 Jan 15;150(2):563–570. [PubMed] [Google Scholar]
- Fonteh A. N., Chilton F. H. Rapid remodeling of arachidonate from phosphatidylcholine to phosphatidylethanolamine pools during mast cell activation. J Immunol. 1992 Mar 15;148(6):1784–1791. [PubMed] [Google Scholar]
- Hill E. E., Lands W. E. Incorporation of long-chain and polyunsaturated acids into phosphatidate and phosphatidylcholine. Biochim Biophys Acta. 1968 May 1;152(3):645–648. doi: 10.1016/0005-2760(68)90109-4. [DOI] [PubMed] [Google Scholar]
- Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishihara H., Tamiya-Koizumi K., Kuriki H., Yoshida S., Kojima K. Growth-associated changes in fatty acid compositions of nuclear phospholipids of liver cells. Biochim Biophys Acta. 1991 Jun 19;1084(1):53–59. doi: 10.1016/0005-2760(91)90055-m. [DOI] [PubMed] [Google Scholar]
- Kramer R. M., Deykin D. Arachidonoyl transacylase in human platelets. Coenzyme A-independent transfer of arachidonate from phosphatidylcholine to lysoplasmenylethanolamine. J Biol Chem. 1983 Nov 25;258(22):13806–13811. [PubMed] [Google Scholar]
- Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
- Laposata M., Reich E. L., Majerus P. W. Arachidonoyl-CoA synthetase. Separation from nonspecific acyl-CoA synthetase and distribution in various cells and tissues. J Biol Chem. 1985 Sep 15;260(20):11016–11020. [PubMed] [Google Scholar]
- MacDonald J. I., Sprecher H. Distribution of arachidonic acid in choline- and ethanolamine-containing phosphoglycerides in subfractionated human neutrophils. J Biol Chem. 1989 Oct 25;264(30):17718–17726. [PubMed] [Google Scholar]
- MacDonald J. I., Sprecher H. Phospholipid fatty acid remodeling in mammalian cells. Biochim Biophys Acta. 1991 Jul 9;1084(2):105–121. doi: 10.1016/0005-2760(91)90209-z. [DOI] [PubMed] [Google Scholar]
- MacDonald J. I., Sprecher H. Studies on the incorporation and transacylation of various fatty acids in choline and ethanolamine-containing phosphoacylglycerol subclasses in human neutrophils. Biochim Biophys Acta. 1989 Aug 8;1004(2):151–157. doi: 10.1016/0005-2760(89)90263-4. [DOI] [PubMed] [Google Scholar]
- Masuzawa Y., Sugiura T., Sprecher H., Waku K. Selective acyl transfer in the reacylation of brain glycerophospholipids. Comparison of three acylation systems for 1-alk-1'-enylglycero-3-phosphoethanolamine, 1-acylglycero-3-phosphoethanolamine and 1-acylglycero-3-phosphocholine in rat brain microsomes. Biochim Biophys Acta. 1989 Sep 11;1005(1):1–12. doi: 10.1016/0005-2760(89)90024-6. [DOI] [PubMed] [Google Scholar]
- Morita I., Schindler M., Regier M. K., Otto J. C., Hori T., DeWitt D. L., Smith W. L. Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. J Biol Chem. 1995 May 5;270(18):10902–10908. doi: 10.1074/jbc.270.18.10902. [DOI] [PubMed] [Google Scholar]
- Murakami M., Kudo I., Inoue K. Eicosanoid generation from antigen-primed mast cells by extracellular mammalian 14-kDa group II phospholipase A2. FEBS Lett. 1991 Dec 9;294(3):247–251. doi: 10.1016/0014-5793(91)81440-j. [DOI] [PubMed] [Google Scholar]
- Murakami M., Kudo I., Inoue K. Molecular nature of phospholipases A2 involved in prostaglandin I2 synthesis in human umbilical vein endothelial cells. Possible participation of cytosolic and extracellular type II phospholipases A2. J Biol Chem. 1993 Jan 15;268(2):839–844. [PubMed] [Google Scholar]
- Neufeld E. J., Majerus P. W., Krueger C. M., Saffitz J. E. Uptake and subcellular distribution of [3H]arachidonic acid in murine fibrosarcoma cells measured by electron microscope autoradiography. J Cell Biol. 1985 Aug;101(2):573–581. doi: 10.1083/jcb.101.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters-Golden M., McNish R. W. Redistribution of 5-lipoxygenase and cytosolic phospholipase A2 to the nuclear fraction upon macrophage activation. Biochem Biophys Res Commun. 1993 Oct 15;196(1):147–153. doi: 10.1006/bbrc.1993.2227. [DOI] [PubMed] [Google Scholar]
- Peters-Golden M., Song K., Marshall T., Brock T. Translocation of cytosolic phospholipase A2 to the nuclear envelope elicits topographically localized phospholipid hydrolysis. Biochem J. 1996 Sep 15;318(Pt 3):797–803. doi: 10.1042/bj3180797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson M., Blank M. L., Snyder F. Acylation of lysophospholipids by rabbit alveolar macrophages. Specificities of CoA-dependent and CoA-independent reactions. J Biol Chem. 1985 Jul 5;260(13):7889–7895. [PubMed] [Google Scholar]
- Rouser G., Siakotos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids. 1966 Jan;1(1):85–86. doi: 10.1007/BF02668129. [DOI] [PubMed] [Google Scholar]
- Schievella A. R., Regier M. K., Smith W. L., Lin L. L. Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem. 1995 Dec 22;270(51):30749–30754. doi: 10.1074/jbc.270.51.30749. [DOI] [PubMed] [Google Scholar]
- Sugiura T., Katayama O., Fukui J., Nakagawa Y., Waku K. Mobilization of arachidonic acid between diacyl and ether phospholipids in rabbit alveolar macrophages. FEBS Lett. 1984 Jan 9;165(2):273–276. doi: 10.1016/0014-5793(84)80184-2. [DOI] [PubMed] [Google Scholar]
- Surette M. E., Winkler J. D., Fonteh A. N., Chilton F. H. Relationship between arachidonate--phospholipid remodeling and apoptosis. Biochemistry. 1996 Jul 16;35(28):9187–9196. doi: 10.1021/bi9530245. [DOI] [PubMed] [Google Scholar]
- Venable M. E., Olson S. C., Nieto M. L., Wykle R. L. Enzymatic studies of lyso platelet-activating factor acylation in human neutrophils and changes upon stimulation. J Biol Chem. 1993 Apr 15;268(11):7965–7975. [PubMed] [Google Scholar]
- Waku K., Lands W. E. Control of lecithin biosynthesis in erythrocyte membranes. J Lipid Res. 1968 Jan;9(1):12–18. [PubMed] [Google Scholar]
- Waku K. Origins and fates of fatty acyl-CoA esters. Biochim Biophys Acta. 1992 Mar 4;1124(2):101–111. doi: 10.1016/0005-2760(92)90085-a. [DOI] [PubMed] [Google Scholar]
- Wilson D. B., Prescott S. M., Majerus P. W. Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J Biol Chem. 1982 Apr 10;257(7):3510–3515. [PubMed] [Google Scholar]
- Winkler J. D., Sung C. M., Bennett C. F., Chilton F. H. Characterization of CoA-independent transacylase activity in U937 cells. Biochim Biophys Acta. 1991 Feb 5;1081(3):339–346. doi: 10.1016/0005-2760(91)90291-o. [DOI] [PubMed] [Google Scholar]
- Woods J. W., Evans J. F., Ethier D., Scott S., Vickers P. J., Hearn L., Heibein J. A., Charleson S., Singer I. I. 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp Med. 1993 Dec 1;178(6):1935–1946. doi: 10.1084/jem.178.6.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]