Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):967–974. doi: 10.1042/bj3300967

An analysis of the role of active site protic residues of cytochrome P-450s: mechanistic and mutational studies on 17alpha-hydroxylase-17,20-lyase (P-45017alpha also CYP17).

P Lee-Robichaud 1, M E Akhtar 1, M Akhtar 1
PMCID: PMC1219232  PMID: 9480917

Abstract

Certain cytochrome P-450s involved in the transformation of steroids catalyse not only the hydroxylation process associated with the group of enzymes, but also an acyl-carbon cleavage reaction. The hydroxylation occurs using an iron-monooxygen species while the acyl-carbon cleavage has been suggested to be promoted by an iron peroxide. In this paper we have studied the role of active site protic residues, Glu305 and Thr306, in modulating the two activities. For this purpose, the kinetic parameters for the hydroxylation reaction (pregnenolone-->17alpha-hydroxypregnenolone) and two different versions of acyl-carbon cleavage (17alpha-hydroxypregnenolone-->dehydroepiandrosterone and 3beta-hydroxyandrost-5-ene-17beta-carbaldehyde-->3beta-hydroxya ndrost -5,16-diene+androst-5-ene-3beta,17alpha-diol) were determined using the wild-type human CYP17 and its eight different single and double mutants. In addition the propensity of the proteins to undergo a subtle rearrangement converting the 450 nm active-form into an inactive counterpart absorbing at 420 nm, was monitored by measuring the t12 of the P-450-->P-420 conversion. The results are interpreted to draw the following conclusions. The functional groups of Glu305 and Thr306 do not directly participate in the two proton delivery steps required for hydroxylation but may be important participants for the provision of a net work of hydrogen bonds for 'activating' water that then acts as a proton donor. The loss of any one of these residues is, therefore, only partially debilitating. That the mutation of Thr306 impairs the hydroxylation reaction more than it does the acyl-carbon cleavage is consistent with the detailed mechanistic scheme considered in this paper. Furthermore attention is drawn to the fact that the mutation of Glu305 and Thr306 subtly perturbed the architecture of the active site, which affects the geometry of this region of the protein and therefore its catalytic properties.

Full Text

The Full Text of this article is available as a PDF (505.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhtar M., Alexander K., Boar R. B., McGhie J. F., Barton D. H. Chemical and enzymic studies on the characterization of intermediates during the removal of the 14alpha-methyl group in cholesterol biosynthesis. The use of 32-functionalized lanostane derivatives. Biochem J. 1978 Mar 1;169(3):449–463. doi: 10.1042/bj1690449b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akhtar M., Calder M. R., Corina D. L., Wright J. N. Mechanistic studies on C-19 demethylation in oestrogen biosynthesis. Biochem J. 1982 Mar 1;201(3):569–580. doi: 10.1042/bj2010569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akhtar M., Corina D., Miller S., Shyadehi A. Z., Wright J. N. Mechanism of the acyl-carbon cleavage and related reactions catalyzed by multifunctional P-450s: studies on cytochrome P-450(17)alpha. Biochemistry. 1994 Apr 12;33(14):4410–4418. doi: 10.1021/bi00180a039. [DOI] [PubMed] [Google Scholar]
  4. Akhtar M., Lee-Robichaud P., Akhtar M. E., Wright J. N. The impact of aromatase mechanism on other P450s. J Steroid Biochem Mol Biol. 1997 Apr;61(3-6):127–132. [PubMed] [Google Scholar]
  5. Akhtar M., Njar V. C., Wright J. N. Mechanistic studies on aromatase and related C-C bond cleaving P-450 enzymes. J Steroid Biochem Mol Biol. 1993 Mar;44(4-6):375–387. doi: 10.1016/0960-0760(93)90241-n. [DOI] [PubMed] [Google Scholar]
  6. Akhtar M., Wright J. N. A unified mechanistic view of oxidative reactions catalysed by P-450 and related Fe-containing enzymes. Nat Prod Rep. 1991 Dec;8(6):527–551. doi: 10.1039/np9910800527. [DOI] [PubMed] [Google Scholar]
  7. Atkinson J. K., Hollenberg P. F., Ingold K. U., Johnson C. C., Le Tadic M. H., Newcomb M., Putt D. A. Cytochrome P450-catalyzed hydroxylation of hydrocarbons: kinetic deuterium isotope effects for the hydroxylation of an ultrafast radical clock. Biochemistry. 1994 Sep 6;33(35):10630–10637. doi: 10.1021/bi00201a009. [DOI] [PubMed] [Google Scholar]
  8. Benson D. E., Suslick K. S., Sligar S. G. Reduced oxy intermediate observed in D251N cytochrome P450cam. Biochemistry. 1997 Apr 29;36(17):5104–5107. doi: 10.1021/bi963170q. [DOI] [PubMed] [Google Scholar]
  9. Coon M. J., Ding X. X., Pernecky S. J., Vaz A. D. Cytochrome P450: progress and predictions. FASEB J. 1992 Jan 6;6(2):669–673. doi: 10.1096/fasebj.6.2.1537454. [DOI] [PubMed] [Google Scholar]
  10. Coon M. J., Vaz A. D., Bestervelt L. L. Cytochrome P450 2: peroxidative reactions of diversozymes. FASEB J. 1996 Mar;10(4):428–434. doi: 10.1096/fasebj.10.4.8647341. [DOI] [PubMed] [Google Scholar]
  11. Cupp-Vickery J. R., Poulos T. L. Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Nat Struct Biol. 1995 Feb;2(2):144–153. doi: 10.1038/nsb0295-144. [DOI] [PubMed] [Google Scholar]
  12. Ellis S. W., Hayhurst G. P., Smith G., Lightfoot T., Wong M. M., Simula A. P., Ackland M. J., Sternberg M. J., Lennard M. S., Tucker G. T. Evidence that aspartic acid 301 is a critical substrate-contact residue in the active site of cytochrome P450 2D6. J Biol Chem. 1995 Dec 8;270(49):29055–29058. doi: 10.1074/jbc.270.49.29055. [DOI] [PubMed] [Google Scholar]
  13. Fukuda T., Imai Y., Komori M., Nakamura M., Kusunose E., Satouchi K., Kusunose M. Replacement of Thr-303 of P450 2E1 with serine modifies the regioselectivity of its fatty acid hydroxylase activity. J Biochem. 1993 Jan;113(1):7–12. doi: 10.1093/oxfordjournals.jbchem.a124006. [DOI] [PubMed] [Google Scholar]
  14. Gelb M. H., Heimbrook D. C., Mälkönen P., Sligar S. G. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monoxygenase system. Biochemistry. 1982 Jan 19;21(2):370–377. doi: 10.1021/bi00531a026. [DOI] [PubMed] [Google Scholar]
  15. Gerber N. C., Sligar S. G. A role for Asp-251 in cytochrome P-450cam oxygen activation. J Biol Chem. 1994 Feb 11;269(6):4260–4266. [PubMed] [Google Scholar]
  16. Groves J. T., McClusky G. A. Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate. Biochem Biophys Res Commun. 1978 Mar 15;81(1):154–160. doi: 10.1016/0006-291x(78)91643-1. [DOI] [PubMed] [Google Scholar]
  17. Gunsalus I. C., Sligar S. G. Oxygen reduction by the P450 monoxygenase systems. Adv Enzymol Relat Areas Mol Biol. 1978;47:1–44. doi: 10.1002/9780470122921.ch1. [DOI] [PubMed] [Google Scholar]
  18. Hasemann C. A., Kurumbail R. G., Boddupalli S. S., Peterson J. A., Deisenhofer J. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure. 1995 Jan 15;3(1):41–62. doi: 10.1016/s0969-2126(01)00134-4. [DOI] [PubMed] [Google Scholar]
  19. Hiroya K., Murakami Y., Shimizu T., Hatano M., Ortiz de Montellano P. R. Differential roles of Glu318 and Thr319 in cytochrome P450 1A2 catalysis supported by NADPH-cytochrome P450 reductase and tert-butyl hydroperoxide. Arch Biochem Biophys. 1994 May 1;310(2):397–401. doi: 10.1006/abbi.1994.1184. [DOI] [PubMed] [Google Scholar]
  20. Imai M., Shimada H., Watanabe Y., Matsushima-Hibiya Y., Makino R., Koga H., Horiuchi T., Ishimura Y. Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7823–7827. doi: 10.1073/pnas.86.20.7823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Imai T., Globerman H., Gertner J. M., Kagawa N., Waterman M. R. Expression and purification of functional human 17 alpha-hydroxylase/17,20-lyase (P450c17) in Escherichia coli. Use of this system for study of a novel form of combined 17 alpha-hydroxylase/17,20-lyase deficiency. J Biol Chem. 1993 Sep 15;268(26):19681–19689. [PubMed] [Google Scholar]
  22. Ishigooka M., Shimizu T., Hiroya K., Hatano M. Role of Glu318 at the putative distal site in the catalytic function of cytochrome P450d. Biochemistry. 1992 Feb 11;31(5):1528–1531. doi: 10.1021/bi00120a033. [DOI] [PubMed] [Google Scholar]
  23. Katagiri M., Kagawa N., Waterman M. R. The role of cytochrome b5 in the biosynthesis of androgens by human P450c17. Arch Biochem Biophys. 1995 Mar 10;317(2):343–347. doi: 10.1006/abbi.1995.1173. [DOI] [PubMed] [Google Scholar]
  24. Kimata Y., Shimada H., Hirose T., Ishimura Y. Role of Thr-252 in cytochrome P450cam: a study with unnatural amino acid mutagenesis. Biochem Biophys Res Commun. 1995 Mar 8;208(1):96–102. doi: 10.1006/bbrc.1995.1310. [DOI] [PubMed] [Google Scholar]
  25. Kremers P., Denoel J., Lapiere C. L. Synthesis and study of the labeling of pregnenolone and progesterone specifically tritiated at the 17 position. Steroids. 1974 Apr;23(4):603–613. doi: 10.1016/0039-128x(74)90011-7. [DOI] [PubMed] [Google Scholar]
  26. Lee-Robichaud P., Shyadehi A. Z., Wright J. N., Akhtar M. E., Akhtar M. Mechanistic kinship between hydroxylation and desaturation reactions: acyl-carbon bond cleavage promoted by pig and human CYP17 (P-450(17)alpha; 17 alpha-hydroxylase-17,20-lyase). Biochemistry. 1995 Oct 31;34(43):14104–14113. doi: 10.1021/bi00043a015. [DOI] [PubMed] [Google Scholar]
  27. Lee-Robichaud P., Wright J. N., Akhtar M. E., Akhtar M. Modulation of the activity of human 17 alpha-hydroxylase-17,20-lyase (CYP17) by cytochrome b5: endocrinological and mechanistic implications. Biochem J. 1995 Jun 15;308(Pt 3):901–908. doi: 10.1042/bj3080901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lewis D. F. Three-dimensional models of human and other mammalian microsomal P450s constructed from an alignment with P450102 (P450bm3). Xenobiotica. 1995 Apr;25(4):333–366. doi: 10.3109/00498259509061857. [DOI] [PubMed] [Google Scholar]
  29. Mansuy D., Boucher J. L., Clement B. On the mechanism of nitric oxide formation upon oxidative cleavage of C = N(OH) bonds by NO-synthases and cytochromes P450. Biochimie. 1995;77(7-8):661–667. doi: 10.1016/0300-9084(96)88181-8. [DOI] [PubMed] [Google Scholar]
  30. Martinis S. A., Blanke S. R., Hager L. P., Sligar S. G., Hoa G. H., Rux J. J., Dawson J. H. Probing the heme iron coordination structure of pressure-induced cytochrome P420cam. Biochemistry. 1996 Nov 19;35(46):14530–14536. doi: 10.1021/bi961511u. [DOI] [PubMed] [Google Scholar]
  31. Modi S., Sutcliffe M. J., Primrose W. U., Lian L. Y., Roberts G. C. The catalytic mechanism of cytochrome P450 BM3 involves a 6 A movement of the bound substrate on reduction. Nat Struct Biol. 1996 May;3(5):414–417. doi: 10.1038/nsb0596-414. [DOI] [PubMed] [Google Scholar]
  32. Nakajin S., Hall P. F. Microsomal cytochrome P-450 from neonatal pig testis. Purification and properties of A C21 steroid side-chain cleavage system (17 alpha-hydroxylase-C17,20 lyase). J Biol Chem. 1981 Apr 25;256(8):3871–3876. [PubMed] [Google Scholar]
  33. Oprea T. I., Hummer G., Garcia A. E. Identification of a functional water channel in cytochrome P450 enzymes. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2133–2138. doi: 10.1073/pnas.94.6.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Poulos T. L., Finzel B. C., Howard A. J. High-resolution crystal structure of cytochrome P450cam. J Mol Biol. 1987 Jun 5;195(3):687–700. doi: 10.1016/0022-2836(87)90190-2. [DOI] [PubMed] [Google Scholar]
  35. Raner G. M., Chiang E. W., Vaz A. D., Coon M. J. Mechanism-based inactivation of cytochrome P450 2B4 by aldehydes: relationship to aldehyde deformylation via a peroxyhemiacetal intermediate. Biochemistry. 1997 Apr 22;36(16):4895–4902. doi: 10.1021/bi9630568. [DOI] [PubMed] [Google Scholar]
  36. Roberts E. S., Vaz A. D., Coon M. J. Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: deformylation with olefin formation. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8963–8966. doi: 10.1073/pnas.88.20.8963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shyadehi A. Z., Lamb D. C., Kelly S. L., Kelly D. E., Schunck W. H., Wright J. N., Corina D., Akhtar M. The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha-demethylase of Candida albicans (other names are: lanosterol 14 alpha-demethylase, P-45014DM, and CYP51). J Biol Chem. 1996 May 24;271(21):12445–12450. doi: 10.1074/jbc.271.21.12445. [DOI] [PubMed] [Google Scholar]
  38. Strittmatter P., Fleming P., Connors M., Corcoran D. Purification of cytochrome b5. Methods Enzymol. 1978;52:97–101. doi: 10.1016/s0076-6879(78)52010-7. [DOI] [PubMed] [Google Scholar]
  39. Strobel H. W., Dignam J. D. Purification and properties of NADPH-cytochrome P-450 reductase. Methods Enzymol. 1978;52:89–96. doi: 10.1016/s0076-6879(78)52009-0. [DOI] [PubMed] [Google Scholar]
  40. Swinney D. C., Mak A. Y. Androgen formation by cytochrome P450 CYP17. Solvent isotope effect and pL studies suggest a role for protons in the regulation of oxene versus peroxide chemistry. Biochemistry. 1994 Mar 1;33(8):2185–2190. doi: 10.1021/bi00174a027. [DOI] [PubMed] [Google Scholar]
  41. Vaz A. D., Pernecky S. J., Raner G. M., Coon M. J. Peroxo-iron and oxenoid-iron species as alternative oxygenating agents in cytochrome P450-catalyzed reactions: switching by threonine-302 to alanine mutagenesis of cytochrome P450 2B4. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4644–4648. doi: 10.1073/pnas.93.10.4644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wright J. N., Akhtar M. Studies on estrogen biosynthesis using radioactive and stable isotopes. Steroids. 1990 Apr;55(4):142–151. doi: 10.1016/0039-128x(90)90102-h. [DOI] [PubMed] [Google Scholar]
  43. Yeom H., Sligar S. G., Li H., Poulos T. L., Fulco A. J. The role of Thr268 in oxygen activation of cytochrome P450BM-3. Biochemistry. 1995 Nov 14;34(45):14733–14740. doi: 10.1021/bi00045a014. [DOI] [PubMed] [Google Scholar]
  44. Yeom H., Sligar S. G. Oxygen activation by cytochrome P450BM-3: effects of mutating an active site acidic residue. Arch Biochem Biophys. 1997 Jan 15;337(2):209–216. doi: 10.1006/abbi.1996.9763. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES