Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 1;331(Pt 1):193–199. doi: 10.1042/bj3310193

Bovine submaxillary mucin contains multiple domains and tandemly repeated non-identical sequences.

W Jiang 1, J T Woitach 1, R L Keil 1, V P Bhavanandan 1
PMCID: PMC1219338  PMID: 9512479

Abstract

A number of cDNA fragments coding for bovine submaxillary mucin (BSM) were cloned, and the nucleotide sequence of the largest clone, BSM421, was determined. Two peptide sequences determined from the purified apoBSM were found near the N-terminus of the mucin-coding region of BSM421. This clone does not contain a start or stop codon, but its 3' end overlaps with the 5' end of a previously isolated clone, lambdaBSM10. The composite sequence of 1589 amino acid residues consists of five distinct protein domains, which are numbered from the C-terminus. The cysteine-rich domain I can be further divided into a von Willebrand factor type C repeat and a cystine knot. Domains III and V consist of similar repeated peptide sequences with an average of 47 residues. Domains II and IV do not contain such sequences but are similar to domains III and V in being rich in serine and threonine, many of which are predicted to be potential O-glycosylation sites. Domain III also contains two sequences that match the ATP/GTP-binding site motif A (P-loop). Only beta-strands and no alpha-helices are predicted for the partial deduced amino acid sequence. Northern analysis of submaxillary gland RNA with the BSM421 probe detected multiple messages of BSM with sizes from 1.1 to over 10 kb. The tandemly repeated, non-identical peptide sequences of approx. 47 residues in domains III and V of BSM differ from the tandemly repeated, identical 81-residue sequences of pig submaxillary mucin (PSM), although both BSM and PSM contain similar C-terminal domains. In contrast, two peptide sequences of ovine submaxillary mucin are highly similar (86% and 65% identical respectively) to the corresponding sequences in domain V of BSM.

Full Text

The Full Text of this article is available as a PDF (881.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel R. D., Bairoch A., Hochstrasser D. F. A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci. 1994 Jun;19(6):258–260. doi: 10.1016/0968-0004(94)90153-8. [DOI] [PubMed] [Google Scholar]
  2. Asker N., Baeckström D., Axelsson M. A., Carlstedt I., Hansson G. C. The human MUC2 mucin apoprotein appears to dimerize before O-glycosylation and shares epitopes with the 'insoluble' mucin of rat small intestine. Biochem J. 1995 Jun 15;308(Pt 3):873–880. doi: 10.1042/bj3080873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baeckström D., Hansson G. C. The transcripts of the apomucin genes MUC2, MUC4, and MUC5AC are large and appear as distinct bands. Glycoconj J. 1996 Oct;13(5):833–837. doi: 10.1007/BF00702347. [DOI] [PubMed] [Google Scholar]
  4. Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1995. Nucleic Acids Res. 1996 Jan 1;24(1):189–196. doi: 10.1093/nar/24.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhargava A. K., Woitach J. T., Davidson E. A., Bhavanandan V. P. Cloning and cDNA sequence of a bovine submaxillary gland mucin-like protein containing two distinct domains. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6798–6802. doi: 10.1073/pnas.87.17.6798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bhavanandan V. P., Hegarty J. D. Identification of the mucin core protein by cell-free translation of messenger RNA from bovine submaxillary glands. J Biol Chem. 1987 Apr 25;262(12):5913–5917. [PubMed] [Google Scholar]
  7. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett. 1993 Jul 26;327(2):125–130. doi: 10.1016/0014-5793(93)80155-n. [DOI] [PubMed] [Google Scholar]
  8. Branka J. E., Vallette G., Jarry A., Laboisse C. L. Stimulation of mucin exocytosis from human epithelial cells by nitric oxide: evidence for a cGMP-dependent and a cGMP-independent pathway. Biochem J. 1997 Apr 15;323(Pt 2):521–524. doi: 10.1042/bj3230521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carlstedt I., Sheehan J. K., Corfield A. P., Gallagher J. T. Mucous glycoproteins: a gel of a problem. Essays Biochem. 1985;20:40–76. [PubMed] [Google Scholar]
  10. Corfield T. Mucus glycoproteins, super glycoforms: how to solve a sticky problem? Glycoconj J. 1992 Oct;9(5):217–221. doi: 10.1007/BF00731130. [DOI] [PubMed] [Google Scholar]
  11. Desseyn J. L., Guyonnet-Dupérat V., Porchet N., Aubert J. P., Laine A. Human mucin gene MUC5B, the 10.7-kb large central exon encodes various alternate subdomains resulting in a super-repeat. Structural evidence for a 11p15.5 gene family. J Biol Chem. 1997 Feb 7;272(6):3168–3178. doi: 10.1074/jbc.272.6.3168. [DOI] [PubMed] [Google Scholar]
  12. Eckhardt A. E., Timpte C. S., Abernethy J. L., Zhao Y., Hill R. L. Porcine submaxillary mucin contains a cystine-rich, carboxyl-terminal domain in addition to a highly repetitive, glycosylated domain. J Biol Chem. 1991 May 25;266(15):9678–9686. [PubMed] [Google Scholar]
  13. Gerken T. A., Owens C. L., Pasumarthy M. Determination of the site-specific O-glycosylation pattern of the porcine submaxillary mucin tandem repeat glycopeptide. Model proposed for the polypeptide:galnac transferase peptide binding site. J Biol Chem. 1997 Apr 11;272(15):9709–9719. doi: 10.1074/jbc.272.15.9709. [DOI] [PubMed] [Google Scholar]
  14. Gum J. R., Hicks J. W., Swallow D. M., Lagace R. L., Byrd J. C., Lamport D. T., Siddiki B., Kim Y. S. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem Biophys Res Commun. 1990 Aug 31;171(1):407–415. doi: 10.1016/0006-291x(90)91408-k. [DOI] [PubMed] [Google Scholar]
  15. Gum J. R., Jr, Hicks J. W., Toribara N. W., Rothe E. M., Lagace R. E., Kim Y. S. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem. 1992 Oct 25;267(30):21375–21383. [PubMed] [Google Scholar]
  16. Gum J. R., Jr, Hicks J. W., Toribara N. W., Siddiki B., Kim Y. S. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem. 1994 Jan 28;269(4):2440–2446. [PubMed] [Google Scholar]
  17. Guyonnet Duperat V., Audie J. P., Debailleul V., Laine A., Buisine M. P., Galiegue-Zouitina S., Pigny P., Degand P., Aubert J. P., Porchet N. Characterization of the human mucin gene MUC5AC: a consensus cysteine-rich domain for 11p15 mucin genes? Biochem J. 1995 Jan 1;305(Pt 1):211–219. doi: 10.1042/bj3050211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hansen J. E., Lund O., Engelbrecht J., Bohr H., Nielsen J. O., Hansen J. E. Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J. 1995 Jun 15;308(Pt 3):801–813. doi: 10.1042/bj3080801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hill H. D., Jr, Schwyzer M., Steinman H. M., Hill R. L. Ovine submaxillary mucin. Primary structure and peptide substrates of UDP-N-acetylgalactosamine:mucin transferase. J Biol Chem. 1977 Jun 10;252(11):3799–3804. [PubMed] [Google Scholar]
  20. Hoffmann W. A new repetitive protein from Xenopus laevis skin highly homologous to pancreatic spasmolytic polypeptide. J Biol Chem. 1988 Jun 5;263(16):7686–7690. [PubMed] [Google Scholar]
  21. Jiang W., Woitach J. T., Gupta D. Sequence of bovine carbonic anhydrase VI: potential recognition sites for N-acetylgalactosaminyltransferase. Biochem J. 1996 Aug 15;318(Pt 1):291–296. doi: 10.1042/bj3180291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Joba W., Hoffmann W. Similarities of integumentary mucin B.1 from Xenopus laevis and prepro-von Willebrand factor at their amino-terminal regions. J Biol Chem. 1997 Jan 17;272(3):1805–1810. doi: 10.1074/jbc.272.3.1805. [DOI] [PubMed] [Google Scholar]
  23. Khatri I. A., Forstner G. G., Forstner J. F. Suggestive evidence for two different mucin genes in rat intestine. Biochem J. 1993 Sep 1;294(Pt 2):391–399. doi: 10.1042/bj2940391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Koonin E. V. A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol. 1993 Feb 20;229(4):1165–1174. doi: 10.1006/jmbi.1993.1115. [DOI] [PubMed] [Google Scholar]
  25. Lesuffleur T., Porchet N., Aubert J. P., Swallow D., Gum J. R., Kim Y. S., Real F. X., Zweibaum A. Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J Cell Sci. 1993 Nov;106(Pt 3):771–783. doi: 10.1242/jcs.106.3.771. [DOI] [PubMed] [Google Scholar]
  26. Lüthy R., Xenarios I., Bucher P. Improving the sensitivity of the sequence profile method. Protein Sci. 1994 Jan;3(1):139–146. doi: 10.1002/pro.5560030118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McDonald N. Q., Hendrickson W. A. A structural superfamily of growth factors containing a cystine knot motif. Cell. 1993 May 7;73(3):421–424. doi: 10.1016/0092-8674(93)90127-c. [DOI] [PubMed] [Google Scholar]
  28. Meezaman D., Charles P., Daskal E., Polymeropoulos M. H., Martin B. M., Rose M. C. Cloning and analysis of cDNA encoding a major airway glycoprotein, human tracheobronchial mucin (MUC5). J Biol Chem. 1994 Apr 29;269(17):12932–12939. [PubMed] [Google Scholar]
  29. Perez-Vilar J., Eckhardt A. E., Hill R. L. Porcine submaxillary mucin forms disulfide-bonded dimers between its carboxyl-terminal domains. J Biol Chem. 1996 Apr 19;271(16):9845–9850. doi: 10.1074/jbc.271.16.9845. [DOI] [PubMed] [Google Scholar]
  30. Pigman W., Moschera J., Weiss M., Tettamanti G. The occurrence of repetitive glycopeptide sequences in bovine submaxillary glycoprotein. Eur J Biochem. 1973 Jan 3;32(1):148–154. doi: 10.1111/j.1432-1033.1973.tb02591.x. [DOI] [PubMed] [Google Scholar]
  31. Probst J. C., Hauser F., Joba W., Hoffmann W. The polymorphic integumentary mucin B.1 from Xenopus laevis contains the short consensus repeat. J Biol Chem. 1992 Mar 25;267(9):6310–6316. [PubMed] [Google Scholar]
  32. Rao K. S., Masson P. L. Study of the primary structures of the peptide core of bovine estrus cervical mucin. Possible existence of small similar subunits. J Biol Chem. 1977 Nov 10;252(21):7788–7795. [PubMed] [Google Scholar]
  33. Rose M. C. Mucins: structure, function, and role in pulmonary diseases. Am J Physiol. 1992 Oct;263(4 Pt 1):L413–L429. doi: 10.1152/ajplung.1992.263.4.L413. [DOI] [PubMed] [Google Scholar]
  34. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  35. Roussel P., Lamblin G., Lhermitte M., Houdret N., Lafitte J. J., Perini J. M., Klein A., Scharfman A. The complexity of mucins. Biochimie. 1988 Nov;70(11):1471–1482. doi: 10.1016/0300-9084(88)90284-2. [DOI] [PubMed] [Google Scholar]
  36. Salamov A. A., Solovyev V. V. Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol. 1995 Mar 17;247(1):11–15. doi: 10.1006/jmbi.1994.0116. [DOI] [PubMed] [Google Scholar]
  37. Smith R. F., Wiese B. A., Wojzynski M. K., Davison D. B., Worley K. C. BCM Search Launcher--an integrated interface to molecular biology data base search and analysis services available on the World Wide Web. Genome Res. 1996 May;6(5):454–462. doi: 10.1101/gr.6.5.454. [DOI] [PubMed] [Google Scholar]
  38. Tabak L. A. In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu Rev Physiol. 1995;57:547–564. doi: 10.1146/annurev.ph.57.030195.002555. [DOI] [PubMed] [Google Scholar]
  39. Tettamanti G., Pigman W. Purification and characterization of bovine and ovine submaxillary mucins. Arch Biochem Biophys. 1968 Mar 20;124(1):41–50. doi: 10.1016/0003-9861(68)90301-9. [DOI] [PubMed] [Google Scholar]
  40. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Timpte C. S., Eckhardt A. E., Abernethy J. L., Hill R. L. Porcine submaxillary gland apomucin contains tandemly repeated, identical sequences of 81 residues. J Biol Chem. 1988 Jan 15;263(2):1081–1088. [PubMed] [Google Scholar]
  42. Toribara N. W., Ho S. B., Gum E., Gum J. R., Jr, Lau P., Kim Y. S. The carboxyl-terminal sequence of the human secretory mucin, MUC6. Analysis Of the primary amino acid sequence. J Biol Chem. 1997 Jun 27;272(26):16398–16403. doi: 10.1074/jbc.272.26.16398. [DOI] [PubMed] [Google Scholar]
  43. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993 Apr;3(2):97–130. doi: 10.1093/glycob/3.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Verma M., Davidson E. A. Molecular cloning and sequencing of a canine tracheobronchial mucin cDNA containing a cysteine-rich domain. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7144–7148. doi: 10.1073/pnas.90.15.7144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Verma M., Davidson E. A. Mucin genes: structure, expression and regulation. Glycoconj J. 1994 Jun;11(3):172–179. doi: 10.1007/BF00731215. [DOI] [PubMed] [Google Scholar]
  46. Voorberg J., Fontijn R., Calafat J., Janssen H., van Mourik J. A., Pannekoek H. Assembly and routing of von Willebrand factor variants: the requirements for disulfide-linked dimerization reside within the carboxy-terminal 151 amino acids. J Cell Biol. 1991 Apr;113(1):195–205. doi: 10.1083/jcb.113.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Worley K. C., Wiese B. A., Smith R. F. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results. Genome Res. 1995 Sep;5(2):173–184. doi: 10.1101/gr.5.2.173. [DOI] [PubMed] [Google Scholar]
  48. Wu A. M., Csako G., Herp A. Structure, biosynthesis, and function of salivary mucins. Mol Cell Biochem. 1994 Aug 17;137(1):39–55. doi: 10.1007/BF00926038. [DOI] [PubMed] [Google Scholar]
  49. Xu G., Huan L. J., Khatri I. A., Wang D., Bennick A., Fahim R. E., Forstner G. G., Forstner J. F. cDNA for the carboxyl-terminal region of a rat intestinal mucin-like peptide. J Biol Chem. 1992 Mar 15;267(8):5401–5407. [PubMed] [Google Scholar]
  50. Zasloff M., Ginder G. D., Felsenfeld G. A new method for the purification and identification of covalently closed circular DNA molcules. Nucleic Acids Res. 1978 Apr;5(4):1139–1152. doi: 10.1093/nar/5.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES