Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 1;333(Pt 1):85–90. doi: 10.1042/bj3330085

Alteration of zif268 zinc-finger motifs gives rise to non-native zinc-co-ordination sites but preserves wild-type DNA recognition.

A Green 1, B Sarkar 1
PMCID: PMC1219559  PMID: 9639566

Abstract

Zinc fingers are among the major structural motifs found in proteins that are involved in eukaryotic gene regulation. Many of these zinc-finger domains are involved in DNA binding. This study investigated whether the zinc-co-ordinating (Cys)2(His)2 motif found in the three zinc fingers of zif268 could be replaced by a (Cys)4 motif while still preserving DNA recognition. (Cys)2(His)2-to-(Cys)4 mutations were generated in each of the three zinc fingers of zif268 individually, as well as in fingers 1 and 3, and fingers 2 and 3 together. Whereas finger 1 and finger 3 tolerate the switch, such an alteration in finger 2 renders the polypeptide incapable of DNA recognition. The protein-DNA interaction was examined in greater detail by using a methylation-interference assay. The mutant polypeptides containing the (Cys)4 motif in fingers 1 or 3 recognize DNA in a manner identical to the wild-type protein, suggesting that the (Cys)4 motif appears to give rise to a properly folded finger. Additional results indicate that a zif268 variant containing a (Cys)2(His)(Ala) arrangement in finger 1 is also capable of DNA recognition in a manner identical to the wild-type polypeptide. This appears to be the first time that such alterations, in the context of an intact DNA-binding domain, have still allowed for specific DNA recognition. Taken together, the work presented here enhances our understanding of the relationship between metal ligation and DNA-binding by zinc fingers.

Full Text

The Full Text of this article is available as a PDF (299.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Christy B. A., Lau L. F., Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with "zinc finger" sequences. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7857–7861. doi: 10.1073/pnas.85.21.7857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Conte D., Narindrasorasak S., Sarkar B. In vivo and in vitro iron-replaced zinc finger generates free radicals and causes DNA damage. J Biol Chem. 1996 Mar 1;271(9):5125–5130. doi: 10.1074/jbc.271.9.5125. [DOI] [PubMed] [Google Scholar]
  3. Cook W. J., Mosley S. P., Audino D. C., Mullaney D. L., Rovelli A., Stewart G., Denis C. L. Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation. J Biol Chem. 1994 Mar 25;269(12):9374–9379. [PubMed] [Google Scholar]
  4. Del Rio S., Menezes S. R., Setzer D. R. The function of individual zinc fingers in sequence-specific DNA recognition by transcription factor IIIA. J Mol Biol. 1993 Oct 20;233(4):567–579. doi: 10.1006/jmbi.1993.1536. [DOI] [PubMed] [Google Scholar]
  5. Hoovers J. M., Mannens M., John R., Bliek J., van Heyningen V., Porteous D. J., Leschot N. J., Westerveld A., Little P. F. High-resolution localization of 69 potential human zinc finger protein genes: a number are clustered. Genomics. 1992 Feb;12(2):254–263. doi: 10.1016/0888-7543(92)90372-y. [DOI] [PubMed] [Google Scholar]
  6. Klug A., Schwabe J. W. Protein motifs 5. Zinc fingers. FASEB J. 1995 May;9(8):597–604. [PubMed] [Google Scholar]
  7. Omichinski J. G., Trainor C., Evans T., Gronenborn A. M., Clore G. M., Felsenfeld G. A small single-"finger" peptide from the erythroid transcription factor GATA-1 binds specifically to DNA as a zinc or iron complex. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1676–1680. doi: 10.1073/pnas.90.5.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  9. Petersohn D., Schoch S., Brinkmann D. R., Thiel G. The human synapsin II gene promoter. Possible role for the transcription factor zif268/egr-1, polyoma enhancer activator 3, and AP2. J Biol Chem. 1995 Oct 13;270(41):24361–24369. doi: 10.1074/jbc.270.41.24361. [DOI] [PubMed] [Google Scholar]
  10. Predki P. F., Sarkar B. Cooperative interaction of oestrogen receptor 'zinc finger' domain polypeptides on DNA binding. Biochem J. 1995 Feb 1;305(Pt 3):805–810. doi: 10.1042/bj3050805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Predki P. F., Sarkar B. Effect of replacement of "zinc finger" zinc on estrogen receptor DNA interactions. J Biol Chem. 1992 Mar 25;267(9):5842–5846. [PubMed] [Google Scholar]
  12. Thukral S. K., Morrison M. L., Young E. T. Alanine scanning site-directed mutagenesis of the zinc fingers of transcription factor ADR1: residues that contact DNA and that transactivate. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9188–9192. doi: 10.1073/pnas.88.20.9188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zalani S., Holley-Guthrie E., Kenney S. The Zif268 cellular transcription factor activates expression of the Epstein-Barr virus immediate-early BRLF1 promoter. J Virol. 1995 Jun;69(6):3816–3823. doi: 10.1128/jvi.69.6.3816-3823.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES