Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 1;333(Pt 3):705–712. doi: 10.1042/bj3330705

Identification of upstream stimulatory factor as transcriptional activator of the liver promoter of the glucokinase gene.

P B Iynedjian 1
PMCID: PMC1219635  PMID: 9677331

Abstract

A functionally important cis-acting element termed P2 was identified in the liver promoter of the glucokinase gene. Element P2 was delineated by footprinting in vitro with nuclear proteins from rat liver and spleen. Its core sequence in the rat gene is a canonical CACGTG E-box. In the electrophoretic mobility-shift assay with nuclear proteins from rat liver, hepatocytes and hepatoma cells, an oligonucleotide with P2 in the context of the glucokinase promoter sequence gave rise to a DNA-protein complex shown to contain the upstream stimulatory factor (USF) by specific competition experiments and by reactivity with anti-USF antibodies. Transient transfection of hepatoma HepG2 cells, combined with site-directed mutagenesis, demonstrated that the P2 element was important for liver glucokinase promoter activity. Co-transfection of an expression plasmid coding for USF1 activated reporter gene expression in a manner dependent on an intact P2 element, whereas an expression plasmid for c-Myc was ineffective. Expression of a truncated form of USF1 lacking the transcription activation domain and the basic region decreased reporter activity by a dominant-negative effect. The functional significance of the P2 element was also demonstrated in transient transfection of primary hepatocytes.

Full Text

The Full Text of this article is available as a PDF (421.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aperlo C., Boulukos K. E., Sage J., Cuzin F., Pognonec P. Complete sequencing of the murine USF gene and comparison of its genomic organization to that of mFIP/USF2. Genomics. 1996 Nov 1;37(3):337–344. doi: 10.1006/geno.1996.0568. [DOI] [PubMed] [Google Scholar]
  2. Bendall A. J., Molloy P. L. Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2 on specificity and comparison with binding of Myc family members. Nucleic Acids Res. 1994 Jul 25;22(14):2801–2810. doi: 10.1093/nar/22.14.2801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blackwell T. K., Huang J., Ma A., Kretzner L., Alt F. W., Eisenman R. N., Weintraub H. Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol. 1993 Sep;13(9):5216–5224. doi: 10.1128/mcb.13.9.5216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyd K. E., Farnham P. J. Myc versus USF: discrimination at the cad gene is determined by core promoter elements. Mol Cell Biol. 1997 May;17(5):2529–2537. doi: 10.1128/mcb.17.5.2529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Desbarats L., Gaubatz S., Eilers M. Discrimination between different E-box-binding proteins at an endogenous target gene of c-myc. Genes Dev. 1996 Feb 15;10(4):447–460. doi: 10.1101/gad.10.4.447. [DOI] [PubMed] [Google Scholar]
  6. Diaz Guerra M. J., Bergot M. O., Martinez A., Cuif M. H., Kahn A., Raymondjean M. Functional characterization of the L-type pyruvate kinase gene glucose response complex. Mol Cell Biol. 1993 Dec;13(12):7725–7733. doi: 10.1128/mcb.13.12.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Du H., Roy A. L., Roeder R. G. Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO J. 1993 Feb;12(2):501–511. doi: 10.1002/j.1460-2075.1993.tb05682.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gaubatz S., Imhof A., Dosch R., Werner O., Mitchell P., Buettner R., Eilers M. Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J. 1995 Apr 3;14(7):1508–1519. doi: 10.1002/j.1460-2075.1995.tb07137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glinsmann W. H., Hern E. P., Lynch A. Intrinsic regulation of glucose output by rat liver. Am J Physiol. 1969 Apr;216(4):698–703. doi: 10.1152/ajplegacy.1969.216.4.698. [DOI] [PubMed] [Google Scholar]
  10. Hanson R. W., Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem. 1997;66:581–611. doi: 10.1146/annurev.biochem.66.1.581. [DOI] [PubMed] [Google Scholar]
  11. Iynedjian P. B., Gjinovci A., Renold A. E. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J Biol Chem. 1988 Jan 15;263(2):740–744. [PubMed] [Google Scholar]
  12. Iynedjian P. B., Jotterand D., Nouspikel T., Asfari M., Pilot P. R. Transcriptional induction of glucokinase gene by insulin in cultured liver cells and its repression by the glucagon-cAMP system. J Biol Chem. 1989 Dec 25;264(36):21824–21829. [PubMed] [Google Scholar]
  13. Iynedjian P. B. Mammalian glucokinase and its gene. Biochem J. 1993 Jul 1;293(Pt 1):1–13. doi: 10.1042/bj2930001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iynedjian P. B., Marie S., Gjinovci A., Genin B., Deng S. P., Buhler L., Morel P., Mentha G. Glucokinase and cytosolic phosphoenolpyruvate carboxykinase (GTP) in the human liver. Regulation of gene expression in cultured hepatocytes. J Clin Invest. 1995 May;95(5):1966–1973. doi: 10.1172/JCI117880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iynedjian P. B., Marie S., Wang H., Gjinovci A., Nazaryan K. Liver-specific enhancer of the glucokinase gene. J Biol Chem. 1996 Nov 15;271(46):29113–29120. doi: 10.1074/jbc.271.46.29113. [DOI] [PubMed] [Google Scholar]
  16. Iynedjian P. B., Möbius G., Seitz H. J., Wollheim C. B., Renold A. E. Tissue-specific expression of glucokinase: identification of the gene product in liver and pancreatic islets. Proc Natl Acad Sci U S A. 1986 Apr;83(7):1998–2001. doi: 10.1073/pnas.83.7.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iynedjian P. B., Pilot P. R., Nouspikel T., Milburn J. L., Quaade C., Hughes S., Ucla C., Newgard C. B. Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7838–7842. doi: 10.1073/pnas.86.20.7838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Javahery R., Khachi A., Lo K., Zenzie-Gregory B., Smale S. T. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol. 1994 Jan;14(1):116–127. doi: 10.1128/mcb.14.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jetton T. L., Liang Y., Pettepher C. C., Zimmerman E. C., Cox F. G., Horvath K., Matschinsky F. M., Magnuson M. A. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J Biol Chem. 1994 Feb 4;269(5):3641–3654. [PubMed] [Google Scholar]
  20. Katz N., Teutsch H. F., Jungermann K., Sasse D. Heterogeneous reciprocal localization of fructose-1,6-bisphosphatase and of glucokinase in microdissected periportal and perivenous rat liver tissue. FEBS Lett. 1977 Nov 15;83(2):272–276. doi: 10.1016/0014-5793(77)81021-1. [DOI] [PubMed] [Google Scholar]
  21. Kaytor E. N., Shih H., Towle H. C. Carbohydrate regulation of hepatic gene expression. Evidence against a role for the upstream stimulatory factor. J Biol Chem. 1997 Mar 14;272(11):7525–7531. doi: 10.1074/jbc.272.11.7525. [DOI] [PubMed] [Google Scholar]
  22. Kennedy H. J., Viollet B., Rafiq I., Kahn A., Rutter G. A. Upstream stimulatory factor-2 (USF2) activity is required for glucose stimulation of L-pyruvate kinase promoter activity in single living islet beta-cells. J Biol Chem. 1997 Aug 15;272(33):20636–20640. doi: 10.1074/jbc.272.33.20636. [DOI] [PubMed] [Google Scholar]
  23. Kietzmann T., Roth U., Freimann S., Jungermann K. Arterial oxygen partial pressures reduce the insulin-dependent induction of the perivenously located glucokinase in rat hepatocyte cultures: mimicry of arterial oxygen pressures by H2O2. Biochem J. 1997 Jan 1;321(Pt 1):17–20. doi: 10.1042/bj3210017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krylov D., Kasai K., Echlin D. R., Taparowsky E. J., Arnheiter H., Vinson C. A general method to design dominant negatives to B-HLHZip proteins that abolish DNA binding. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12274–12279. doi: 10.1073/pnas.94.23.12274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lefrançois-Martinez A. M., Martinez A., Antoine B., Raymondjean M., Kahn A. Upstream stimulatory factor proteins are major components of the glucose response complex of the L-type pyruvate kinase gene promoter. J Biol Chem. 1995 Feb 10;270(6):2640–2643. doi: 10.1074/jbc.270.6.2640. [DOI] [PubMed] [Google Scholar]
  26. Luo X., Sawadogo M. Functional domains of the transcription factor USF2: atypical nuclear localization signals and context-dependent transcriptional activation domains. Mol Cell Biol. 1996 Apr;16(4):1367–1375. doi: 10.1128/mcb.16.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Magnuson M. A., Andreone T. L., Printz R. L., Koch S., Granner D. K. Rat glucokinase gene: structure and regulation by insulin. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4838–4842. doi: 10.1073/pnas.86.13.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Magnuson M. A., Shelton K. D. An alternate promoter in the glucokinase gene is active in the pancreatic beta cell. J Biol Chem. 1989 Sep 25;264(27):15936–15942. [PubMed] [Google Scholar]
  29. Moorman A. F., de Boer P. A., Charles R., Lamers W. H. Pericentral expression pattern of glucokinase mRNA in the rat liver lobulus. FEBS Lett. 1991 Aug 5;287(1-2):47–52. doi: 10.1016/0014-5793(91)80013-s. [DOI] [PubMed] [Google Scholar]
  30. Moustaïd N., Beyer R. S., Sul H. S. Identification of an insulin response element in the fatty acid synthase promoter. J Biol Chem. 1994 Feb 25;269(8):5629–5634. [PubMed] [Google Scholar]
  31. Niswender K. D., Postic C., Jetton T. L., Bennett B. D., Piston D. W., Efrat S., Magnuson M. A. Cell-specific expression and regulation of a glucokinase gene locus transgene. J Biol Chem. 1997 Sep 5;272(36):22564–22569. doi: 10.1074/jbc.272.36.22564. [DOI] [PubMed] [Google Scholar]
  32. Park E. A., Roesler W. J., Liu J., Klemm D. J., Gurney A. L., Thatcher J. D., Shuman J., Friedman A., Hanson R. W. The role of the CCAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP). Mol Cell Biol. 1990 Dec;10(12):6264–6272. doi: 10.1128/mcb.10.12.6264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Philipp A., Schneider A., Väsrik I., Finke K., Xiong Y., Beach D., Alitalo K., Eilers M. Repression of cyclin D1: a novel function of MYC. Mol Cell Biol. 1994 Jun;14(6):4032–4043. doi: 10.1128/mcb.14.6.4032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pognonec P., Kato H., Roeder R. G. The helix-loop-helix/leucine repeat transcription factor USF can be functionally regulated in a redox-dependent manner. J Biol Chem. 1992 Dec 5;267(34):24563–24567. [PubMed] [Google Scholar]
  35. Rossetti L., Giaccari A., Barzilai N., Howard K., Sebel G., Hu M. Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes. J Clin Invest. 1993 Sep;92(3):1126–1134. doi: 10.1172/JCI116681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Roy A. L., Du H., Gregor P. D., Novina C. D., Martinez E., Roeder R. G. Cloning of an inr- and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO J. 1997 Dec 1;16(23):7091–7104. doi: 10.1093/emboj/16.23.7091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sawadogo M., Roeder R. G. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell. 1985 Nov;43(1):165–175. doi: 10.1016/0092-8674(85)90021-2. [DOI] [PubMed] [Google Scholar]
  38. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shih H., Towle H. C. Definition of the carbohydrate response element of the rat S14 gene. Context of the CACGTG motif determines the specificity of carbohydrate regulation. J Biol Chem. 1994 Mar 25;269(12):9380–9387. [PubMed] [Google Scholar]
  40. Sirito M., Lin Q., Maity T., Sawadogo M. Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res. 1994 Feb 11;22(3):427–433. doi: 10.1093/nar/22.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tanizawa Y., Matsutani A., Chiu K. C., Permutt M. A. Human glucokinase gene: isolation, structural characterization, and identification of a microsatellite repeat polymorphism. Mol Endocrinol. 1992 Jul;6(7):1070–1081. doi: 10.1210/mend.6.7.1354840. [DOI] [PubMed] [Google Scholar]
  42. Valera A., Pujol A., Gregori X., Riu E., Visa J., Bosch F. Evidence from transgenic mice that myc regulates hepatic glycolysis. FASEB J. 1995 Aug;9(11):1067–1078. doi: 10.1096/fasebj.9.11.7649406. [DOI] [PubMed] [Google Scholar]
  43. Vallet V. S., Henrion A. A., Bucchini D., Casado M., Raymondjean M., Kahn A., Vaulont S. Glucose-dependent liver gene expression in upstream stimulatory factor 2 -/- mice. J Biol Chem. 1997 Aug 29;272(35):21944–21949. doi: 10.1074/jbc.272.35.21944. [DOI] [PubMed] [Google Scholar]
  44. Viollet B., Lefrançois-Martinez A. M., Henrion A., Kahn A., Raymondjean M., Martinez A. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms. J Biol Chem. 1996 Jan 19;271(3):1405–1415. doi: 10.1074/jbc.271.3.1405. [DOI] [PubMed] [Google Scholar]
  45. Wang D., Sul H. S. Upstream stimulatory factor binding to the E-box at -65 is required for insulin regulation of the fatty acid synthase promoter. J Biol Chem. 1997 Oct 17;272(42):26367–26374. doi: 10.1074/jbc.272.42.26367. [DOI] [PubMed] [Google Scholar]
  46. Wang D., Sul H. S. Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter. USF1 is regulated. J Biol Chem. 1995 Dec 1;270(48):28716–28722. doi: 10.1074/jbc.270.48.28716. [DOI] [PubMed] [Google Scholar]
  47. Weinhouse S. Regulation of glucokinase in liver. Curr Top Cell Regul. 1976;11:1–50. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES