Abstract
Aminopeptidase A (EC 3.4.11.7, APA) is a 130 kDa membrane-bound aminopeptidase that contains the consensus sequence HEXXH (385-389) found in the zinc metalloprotease family, the zincins. Sequence alignment of the mouse APA with other monozinc-aminopeptidases indicates the presence of a highly conserved glutamate residue (Glu352 in APA) found in the conserved motif GAMEN (349-353). In monozinc-aminopeptidases, the negative charge of the glutamate side-chain carboxylate may constitute the anionic binding site involved in the recognition of the free amino group of substrates or inhibitors. The functional role of Glu352 in APA was investigated by substituting this residue with an aspartate (Asp352), a glycine (Gly352), a glutamine (Gln352) or an arginine (Arg352) residue by site-directed mutagenesis. Kinetic studies showed that the Km values of the mutant enzymes were unaffected, whereas kcat values were decreased 10-250-fold, resulting in a 10-, 30- 260- and 400-fold reduction in cleavage efficiencies for the mutants Asp352, Gly352, Gln352 and Arg352 respectively. The inhibitory potency of two different classes of inhibitors, a thiol and a phosphonate compound, was significantly (P<0.05) decreased by 10- and 4-fold respectively in the mutated enzymes. Moreover, the inhibitory potency of angiotensin I, used as a competitor of the synthetic substrate alpha-l-glutamyl beta-naphthylamide, displayed a 4-fold reduction (P<0.01) in the mutated enzymes, whereas the Ki values of its N-acetyl derivative were unchanged. These data strongly suggest that Glu352 is involved in the catalytic process of APA and contributes to the exopeptidase activity of this enzyme through interaction with the N-terminal part of substrates or inhibitors.
Full Text
The Full Text of this article is available as a PDF (582.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bausback H. H., Churchill L., Ward P. E. Angiotensin metabolism by cerebral microvascular aminopeptidase A. Biochem Pharmacol. 1988 Jan 15;37(2):155–160. doi: 10.1016/0006-2952(88)90712-5. [DOI] [PubMed] [Google Scholar]
- Beaumont A., Le Moual H., Boileau G., Crine P., Roques B. P. Evidence that both arginine 102 and arginine 747 are involved in substrate binding to neutral endopeptidase (EC 3.4.24.11). J Biol Chem. 1991 Jan 5;266(1):214–220. [PubMed] [Google Scholar]
- Burley S. K., David P. R., Sweet R. M., Taylor A., Lipscomb W. N. Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin. J Mol Biol. 1992 Mar 5;224(1):113–140. doi: 10.1016/0022-2836(92)90580-d. [DOI] [PubMed] [Google Scholar]
- Cadel S., Foulon T., Viron A., Balogh A., Midol-Monnet S., Noël N., Cohen P. Aminopeptidase B from the rat testis is a bifunctional enzyme structurally related to leukotriene-A4 hydrolase. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2963–2968. doi: 10.1073/pnas.94.7.2963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chauvel E. N., Coric P., Llorens-Cortès C., Wilk S., Roques B. P., Fournié-Zaluski M. C. Investigation of the active site of aminopeptidase A using a series of new thiol-containing inhibitors. J Med Chem. 1994 Apr 29;37(9):1339–1346. doi: 10.1021/jm00035a014. [DOI] [PubMed] [Google Scholar]
- Chauvel E. N., Llorens-Cortès C., Coric P., Wilk S., Roques B. P., Fournié-Zaluski M. C. Differential inhibition of aminopeptidase A and aminopeptidase N by new beta-amino thiols. J Med Chem. 1994 Sep 2;37(18):2950–2957. doi: 10.1021/jm00044a016. [DOI] [PubMed] [Google Scholar]
- Fournié-Zaluski M. C., Coric P., Turcaud S., Bruetschy L., Lucas E., Noble F., Roques B. P. Potent and systemically active aminopeptidase N inhibitors designed from active-site investigation. J Med Chem. 1992 Apr 3;35(7):1259–1266. doi: 10.1021/jm00085a013. [DOI] [PubMed] [Google Scholar]
- Fukasawa K. M., Fukasawa K., Kanai M., Fujii S., Harada M. Molecular cloning and expression of rat liver aminopeptidase B. J Biol Chem. 1996 Nov 29;271(48):30731–30735. doi: 10.1074/jbc.271.48.30731. [DOI] [PubMed] [Google Scholar]
- Funk C. D., Rådmark O., Fu J. Y., Matsumoto T., Jörnvall H., Shimizu T., Samuelsson B. Molecular cloning and amino acid sequence of leukotriene A4 hydrolase. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6677–6681. doi: 10.1073/pnas.84.19.6677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLENNER G. G., McMILLAN P. J., FOLK J. E. A mammalian peptidase specific for the hydrolysis of N-terminal alpha-L-glutamyl and aspartyl residues. Nature. 1962 Jun 2;194:867–867. doi: 10.1038/194867a0. [DOI] [PubMed] [Google Scholar]
- García-Alvarez N., Cueva R., Suárez-Rendueles P. Molecular cloning of soluble aminopeptidases from Saccharomyces cerevisiae. Sequence analysis of aminopeptidase yscII, a putative zinc-metallopeptidase. Eur J Biochem. 1991 Dec 18;202(3):993–1002. doi: 10.1111/j.1432-1033.1991.tb16461.x. [DOI] [PubMed] [Google Scholar]
- Herlitze S., Koenen M. A general and rapid mutagenesis method using polymerase chain reaction. Gene. 1990 Jul 2;91(1):143–147. doi: 10.1016/0378-1119(90)90177-s. [DOI] [PubMed] [Google Scholar]
- Hesp J. R., Hooper N. M. Proteolytic fragmentation reveals the oligomeric and domain structure of porcine aminopeptidase A. Biochemistry. 1997 Mar 11;36(10):3000–3007. doi: 10.1021/bi962401q. [DOI] [PubMed] [Google Scholar]
- Hooper N. M. Families of zinc metalloproteases. FEBS Lett. 1994 Oct 31;354(1):1–6. doi: 10.1016/0014-5793(94)01079-x. [DOI] [PubMed] [Google Scholar]
- Jongeneel C. V., Bouvier J., Bairoch A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 1989 Jan 2;242(2):211–214. doi: 10.1016/0014-5793(89)80471-5. [DOI] [PubMed] [Google Scholar]
- Kester W. R., Matthews B. W. Comparison of the structures of carboxypeptidase A and thermolysin. J Biol Chem. 1977 Nov 10;252(21):7704–7710. [PubMed] [Google Scholar]
- Kim H., Burley S. K., Lipscomb W. N. Re-refinement of the X-ray crystal structure of bovine lens leucine aminopeptidase complexed with bestatin. J Mol Biol. 1993 Apr 5;230(3):722–724. doi: 10.1006/jmbi.1993.1193. [DOI] [PubMed] [Google Scholar]
- Kim H., Lipscomb W. N. X-ray crystallographic determination of the structure of bovine lens leucine aminopeptidase complexed with amastatin: formulation of a catalytic mechanism featuring a gem-diolate transition state. Biochemistry. 1993 Aug 24;32(33):8465–8478. doi: 10.1021/bi00084a011. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Li L., Wang J., Cooper M. D. cDNA cloning and expression of human glutamyl aminopeptidase (aminopeptidase A). Genomics. 1993 Sep;17(3):657–664. doi: 10.1006/geno.1993.1386. [DOI] [PubMed] [Google Scholar]
- Lojda Z., Gossrau R. Study on aminopeptidase A. Histochemistry. 1980;67(3):267–290. doi: 10.1007/BF00692761. [DOI] [PubMed] [Google Scholar]
- Malfroy B., Kado-Fong H., Gros C., Giros B., Schwartz J. C., Hellmiss R. Molecular cloning and amino acid sequence of rat kidney aminopeptidase M: a member of a super family of zinc-metallohydrolases. Biochem Biophys Res Commun. 1989 May 30;161(1):236–241. doi: 10.1016/0006-291x(89)91586-6. [DOI] [PubMed] [Google Scholar]
- McCaman M. T., Gabe J. D. The nucleotide sequence of the pepN gene and its over-expression in Escherichia coli. Gene. 1986;48(1):145–153. doi: 10.1016/0378-1119(86)90360-4. [DOI] [PubMed] [Google Scholar]
- Nagatsu I., Nagatsu T., Yamamoto T., Glenner G. G., Mehl J. W. Purification of aminopeptidase A in human serum and degradation of angiotensin II by the purified enzyme. Biochim Biophys Acta. 1970 Feb 11;198(2):255–270. doi: 10.1016/0005-2744(70)90058-6. [DOI] [PubMed] [Google Scholar]
- Nanus D. M., Engelstein D., Gastl G. A., Gluck L., Vidal M. J., Morrison M., Finstad C. L., Bander N. H., Albino A. P. Molecular cloning of the human kidney differentiation antigen gp160: human aminopeptidase A. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7069–7073. doi: 10.1073/pnas.90.15.7069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsen J., Cowell G. M., Kønigshøfer E., Danielsen E. M., Møller J., Laustsen L., Hansen O. C., Welinder K. G., Engberg J., Hunziker W. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. FEBS Lett. 1988 Oct 10;238(2):307–314. doi: 10.1016/0014-5793(88)80502-7. [DOI] [PubMed] [Google Scholar]
- Ondetti M. A., Rubin B., Cushman D. W. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science. 1977 Apr 22;196(4288):441–444. doi: 10.1126/science.191908. [DOI] [PubMed] [Google Scholar]
- Orning L., Krivi G., Bild G., Gierse J., Aykent S., Fitzpatrick F. A. Inhibition of leukotriene A4 hydrolase/aminopeptidase by captopril. J Biol Chem. 1991 Sep 5;266(25):16507–16511. [PubMed] [Google Scholar]
- Quiocho F. A., Lipscomb W. N. Carboxypeptidase A: a protein and an enzyme. Adv Protein Chem. 1971;25:1–78. doi: 10.1016/s0065-3233(08)60278-8. [DOI] [PubMed] [Google Scholar]
- Rich D. H., Moon B. J., Harbeson S. Inhibition of aminopeptidases by amastatin and bestatin derivatives. Effect of inhibitor structure on slow-binding processes. J Med Chem. 1984 Apr;27(4):417–422. doi: 10.1021/jm00370a001. [DOI] [PubMed] [Google Scholar]
- Rogi T., Tsujimoto M., Nakazato H., Mizutani S., Tomoda Y. Human placental leucine aminopeptidase/oxytocinase. A new member of type II membrane-spanning zinc metallopeptidase family. J Biol Chem. 1996 Jan 5;271(1):56–61. doi: 10.1074/jbc.271.1.56. [DOI] [PubMed] [Google Scholar]
- Schalk C., d'Orchymont H., Jauch M. F., Tarnus C. 3-Amino-2-tetralone derivatives: novel potent and selective inhibitors of aminopeptidase-M (EC 3.4.11.2). Arch Biochem Biophys. 1994 May 15;311(1):42–46. doi: 10.1006/abbi.1994.1206. [DOI] [PubMed] [Google Scholar]
- Schauder B., Schomburg L., Köhrle J., Bauer K. Cloning of a cDNA encoding an ectoenzyme that degrades thyrotropin-releasing hormone. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9534–9538. doi: 10.1073/pnas.91.20.9534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimada K., Takahashi M., Turner A. J., Tanzawa K. Rat endothelin-converting enzyme-1 forms a dimer through Cys412 with a similar catalytic mechanism and a distinct substrate binding mechanism compared with neutral endopeptidase-24.11. Biochem J. 1996 May 1;315(Pt 3):863–867. doi: 10.1042/bj3150863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song L., Ye M., Troyanovskaya M., Wilk E., Wilk S., Healy D. P. Rat kidney glutamyl aminopeptidase (aminopeptidase A): molecular identity and cellular localization. Am J Physiol. 1994 Oct;267(4 Pt 2):F546–F557. doi: 10.1152/ajprenal.1994.267.4.F546. [DOI] [PubMed] [Google Scholar]
- Sträter N., Lipscomb W. N. Two-metal ion mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analogue, by X-ray crystallography. Biochemistry. 1995 Nov 14;34(45):14792–14800. doi: 10.1021/bi00045a021. [DOI] [PubMed] [Google Scholar]
- Taylor A., Peltier C. Z., Torre F. J., Hakamian N. Inhibition of bovine lens leucine aminopeptidase by bestatin: number of binding sites and slow binding of this inhibitor. Biochemistry. 1993 Jan 26;32(3):784–790. doi: 10.1021/bi00054a007. [DOI] [PubMed] [Google Scholar]
- Tieku S., Hooper N. M. Inhibition of aminopeptidases N, A and W. A re-evaluation of the actions of bestatin and inhibitors of angiotensin converting enzyme. Biochem Pharmacol. 1992 Nov 3;44(9):1725–1730. doi: 10.1016/0006-2952(92)90065-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vazeux G., Iturrioz X., Corvol P., Llorens-Cortès C. A tyrosine residue essential for catalytic activity in aminopeptidase A. Biochem J. 1997 Nov 1;327(Pt 3):883–889. doi: 10.1042/bj3270883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vazeux G., Wang J., Corvol P., Llorens-Cortès C. Identification of glutamate residues essential for catalytic activity and zinc coordination in aminopeptidase A. J Biol Chem. 1996 Apr 12;271(15):9069–9074. doi: 10.1074/jbc.271.15.9069. [DOI] [PubMed] [Google Scholar]
- Wang J., Cooper M. D. Histidine residue in the zinc-binding motif of aminopeptidase A is critical for enzymatic activity. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1222–1226. doi: 10.1073/pnas.90.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watt V. M., Yip C. C. Amino acid sequence deduced from a rat kidney cDNA suggests it encodes the Zn-peptidase aminopeptidase N. J Biol Chem. 1989 Apr 5;264(10):5480–5487. [PubMed] [Google Scholar]
- Wilk S., Thurston L. S. Inhibition of angiotensin III formation by thiol derivatives of acidic amino acids. Neuropeptides. 1990 Jul;16(3):163–168. doi: 10.1016/0143-4179(90)90129-m. [DOI] [PubMed] [Google Scholar]
- Wu Q., Lahti J. M., Air G. M., Burrows P. D., Cooper M. D. Molecular cloning of the murine BP-1/6C3 antigen: a member of the zinc-dependent metallopeptidase family. Proc Natl Acad Sci U S A. 1990 Feb;87(3):993–997. doi: 10.1073/pnas.87.3.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu Q., Li L., Cooper M. D., Pierres M., Gorvel J. P. Aminopeptidase A activity of the murine B-lymphocyte differentiation antigen BP-1/6C3. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):676–680. doi: 10.1073/pnas.88.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zini S., Fournie-Zaluski M. C., Chauvel E., Roques B. P., Corvol P., Llorens-Cortes C. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11968–11973. doi: 10.1073/pnas.93.21.11968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zini S., Masdehors P., Lenkei Z., Fournie-Zaluski M. C., Roques B. P., Corvol P., Llorens-Cortes C. Aminopeptidase A: distribution in rat brain nuclei and increased activity in spontaneously hypertensive rats. Neuroscience. 1997 Jun;78(4):1187–1193. doi: 10.1016/s0306-4522(96)00660-4. [DOI] [PubMed] [Google Scholar]