Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Oct 15;335(Pt 2):313–318. doi: 10.1042/bj3350313

Energy requirements for two aspects of phospholipid metabolism in mammalian brain.

A D Purdon 1, S I Rapoport 1
PMCID: PMC1219784  PMID: 9761729

Abstract

Previous estimates have placed the energy requirements of total phospholipid metabolism in mammalian brain at 2% or less of total ATP consumption. This low estimate was consistent with the very long half-lives (up to days) reported for fatty acids esterified within phospholipids. However, using an approach featuring analysis of brain acyl-CoA, which takes into account dilution of the precursor acyl-CoA pool by recycling of fatty acids, we reported that half-lives of fatty acids in phospholipids are some 100 times shorter (min-h) than previously thought. Based on these new estimates of short half-lives, palmitic acid and arachidonic acid were used as prototype fatty acids to calculate energy consumption by fatty acid recycling at the sn-1 and sn-2 positions of brain phospholipids. We calculated that the energy requirements for reacylation of fatty acids into lysophospholipids are 5% of net brain ATP consumption. We also calculated ATP requirements for maintaining asymmetry of the aminophospholipids, phosphatidylserine and phosphatidylethanolamine across brain membrane bilayers. This asymmetry is maintained by a translocase at a stoichiometry of 1 mol of ATP per mol of phospholipid transferred in either direction across the membrane. The energy cost of maintaining membrane bilayer asymmetry of aminophospholipids at steady-state was calculated to be 8% of total ATP consumed. Taken together, deacylation-reacylation and maintenance of membrane asymmetry of phosphatidylserine and phosphatidylethanolamine require about 13% of ATP consumed by brain as a whole. This is a lower limit for energy consumption by processes involving phospholipids, as other processes, including phosphorylation of polyphosphoinositides and de novo phospholipid biosynthesis, were not considered.

Full Text

The Full Text of this article is available as a PDF (341.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D. Mapping the lipid distribution in the membranes of BHK cells (mini-review). Mol Membr Biol. 1996 Apr-Jun;13(2):81–84. doi: 10.3109/09687689609160580. [DOI] [PubMed] [Google Scholar]
  2. Auland M. E., Roufogalis B. D., Devaux P. F., Zachowski A. Reconstitution of ATP-dependent aminophospholipid translocation in proteoliposomes. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10938–10942. doi: 10.1073/pnas.91.23.10938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker R. R., Chang H. Y. A comparison of lysophosphatidylcholine acyltransferase activities in neuronal nuclei and microsomes isolated from immature rabbit cerebral cortex. Biochim Biophys Acta. 1981 Nov 23;666(2):223–229. doi: 10.1016/0005-2760(81)90111-9. [DOI] [PubMed] [Google Scholar]
  4. Beleznay Z., Zachowski A., Devaux P. F., Navazo M. P., Ott P. ATP-dependent aminophospholipid translocation in erythrocyte vesicles: stoichiometry of transport. Biochemistry. 1993 Mar 30;32(12):3146–3152. doi: 10.1021/bi00063a029. [DOI] [PubMed] [Google Scholar]
  5. Bishop W. R., Bell R. M. Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter. Cell. 1985 Aug;42(1):51–60. doi: 10.1016/s0092-8674(85)80100-8. [DOI] [PubMed] [Google Scholar]
  6. Bitbol M., Devaux P. F. Measurement of outward translocation of phospholipids across human erythrocyte membrane. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6783–6787. doi: 10.1073/pnas.85.18.6783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Connor J., Pak C. H., Zwaal R. F., Schroit A. J. Bidirectional transbilayer movement of phospholipid analogs in human red blood cells. Evidence for an ATP-dependent and protein-mediated process. J Biol Chem. 1992 Sep 25;267(27):19412–19417. [PubMed] [Google Scholar]
  8. Cook H. W. In vitro formation of polyunsaturated fatty acids by desaturation in rat brain: some properties of the enzymes in developing brain and comparisons with liver. J Neurochem. 1978 Jun;30(6):1327–1334. doi: 10.1111/j.1471-4159.1978.tb10463.x. [DOI] [PubMed] [Google Scholar]
  9. Deka N., Sun G. Y., MacQuarrie R. Purification and properties of acyl-CoA:1-acyl-sn-glycero-3-phosphocholine-O-acyltransferase from bovine brain microsomes. Arch Biochem Biophys. 1986 May 1;246(2):554–563. doi: 10.1016/0003-9861(86)90310-3. [DOI] [PubMed] [Google Scholar]
  10. Diaz C., Schroit A. J. Role of translocases in the generation of phosphatidylserine asymmetry. J Membr Biol. 1996 May;151(1):1–9. doi: 10.1007/s002329900051. [DOI] [PubMed] [Google Scholar]
  11. Ford D. A., Hale C. C. Plasmalogen and anionic phospholipid dependence of the cardiac sarcolemmal sodium-calcium exchanger. FEBS Lett. 1996 Sep 23;394(1):99–102. doi: 10.1016/0014-5793(96)00930-1. [DOI] [PubMed] [Google Scholar]
  12. Glaser P. E., Gross R. W. Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry. 1995 Sep 26;34(38):12193–12203. doi: 10.1021/bi00038a013. [DOI] [PubMed] [Google Scholar]
  13. Grange E., Deutsch J., Smith Q. R., Chang M., Rapoport S. I., Purdon A. D. Specific activity of brain palmitoyl-CoA pool provides rates of incorporation of palmitate in brain phospholipids in awake rats. J Neurochem. 1995 Nov;65(5):2290–2298. doi: 10.1046/j.1471-4159.1995.65052290.x. [DOI] [PubMed] [Google Scholar]
  14. Heinrich R., Brumen M., Jaeger A., Müller P., Herrmann A. Modelling of phospholipid translocation in the erythrocyte membrane: a combined kinetic and thermodynamic approach. J Theor Biol. 1997 Apr 7;185(3):295–312. doi: 10.1006/jtbi.1996.0325. [DOI] [PubMed] [Google Scholar]
  15. Herrmann A., Zachowski A., Devaux P. F. Protein-mediated phospholipid translocation in the endoplasmic reticulum with a low lipid specificity. Biochemistry. 1990 Feb 27;29(8):2023–2027. doi: 10.1021/bi00460a010. [DOI] [PubMed] [Google Scholar]
  16. Hinkle P. C., Kumar M. A., Resetar A., Harris D. L. Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry. 1991 Apr 9;30(14):3576–3582. doi: 10.1021/bi00228a031. [DOI] [PubMed] [Google Scholar]
  17. Masuzawa Y., Sugiura T., Ishima Y., Waku K. Turnover rates of the molecular species of ethanolamine plasmalogen of rat brain. J Neurochem. 1984 Apr;42(4):961–968. doi: 10.1111/j.1471-4159.1984.tb12697.x. [DOI] [PubMed] [Google Scholar]
  18. Masuzawa Y., Sugiura T., Sprecher H., Waku K. Selective acyl transfer in the reacylation of brain glycerophospholipids. Comparison of three acylation systems for 1-alk-1'-enylglycero-3-phosphoethanolamine, 1-acylglycero-3-phosphoethanolamine and 1-acylglycero-3-phosphocholine in rat brain microsomes. Biochim Biophys Acta. 1989 Sep 11;1005(1):1–12. doi: 10.1016/0005-2760(89)90024-6. [DOI] [PubMed] [Google Scholar]
  19. Moriyama Y., Nelson N., Maeda M., Futai M. Vanadate-sensitive ATPase from chromaffin granule membranes formed a phosphoenzyme intermediate and was activated by phosphatidylserine. Arch Biochem Biophys. 1991 Apr;286(1):252–256. doi: 10.1016/0003-9861(91)90037-j. [DOI] [PubMed] [Google Scholar]
  20. Pete M. J., Wu D. W., Exton J. H. Subcellular fractions of bovine brain degrade phosphatidylcholine by sequential deacylation of the sn-1 and sn-2 positions. Biochim Biophys Acta. 1996 Feb 16;1299(3):325–332. doi: 10.1016/0005-2760(95)00225-1. [DOI] [PubMed] [Google Scholar]
  21. Pumphrey A. M. Incorporation of [32P]orthophosphate into brain-slice phospholipids and their precursors. Effects of electrical stimulation. Biochem J. 1969 Mar;112(1):61–70. doi: 10.1042/bj1120061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rehncrona S., Westerberg E., Akesson B., Siesjö B. K. Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia. J Neurochem. 1982 Jan;38(1):84–93. doi: 10.1111/j.1471-4159.1982.tb10857.x. [DOI] [PubMed] [Google Scholar]
  23. Robinson P. J., Noronha J., DeGeorge J. J., Freed L. M., Nariai T., Rapoport S. I. A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev. 1992 Sep-Dec;17(3):187–214. doi: 10.1016/0165-0173(92)90016-f. [DOI] [PubMed] [Google Scholar]
  24. Roelofsen B., van Deenen L. L. Lipid requirement of membrane-bound ATPase. Studies on human erythrocyte ghosts. Eur J Biochem. 1973 Dec 3;40(1):245–257. doi: 10.1111/j.1432-1033.1973.tb03192.x. [DOI] [PubMed] [Google Scholar]
  25. Rolfe D. F., Brown G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997 Jul;77(3):731–758. doi: 10.1152/physrev.1997.77.3.731. [DOI] [PubMed] [Google Scholar]
  26. Schmid P. C., Johnson S. B., Schmid H. H. Remodeling of rat hepatocyte phospholipids by selective acyl turnover. J Biol Chem. 1991 Jul 25;266(21):13690–13697. [PubMed] [Google Scholar]
  27. Seigneuret M., Devaux P. F. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3751–3755. doi: 10.1073/pnas.81.12.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  29. Tang X., Halleck M. S., Schlegel R. A., Williamson P. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science. 1996 Jun 7;272(5267):1495–1497. doi: 10.1126/science.272.5267.1495. [DOI] [PubMed] [Google Scholar]
  30. Verhoeven A. J., Tysnes O. B., Aarbakke G. M., Cook C. A., Holmsen H. Turnover of the phosphomonoester groups of polyphosphoinositol lipids in unstimulated human platelets. Eur J Biochem. 1987 Jul 1;166(1):3–9. doi: 10.1111/j.1432-1033.1987.tb13475.x. [DOI] [PubMed] [Google Scholar]
  31. WHITTAM R. The dependence of the respiration of brain cortex on active cation transport. Biochem J. 1962 Jan;82:205–212. doi: 10.1042/bj0820205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Waku K. Origins and fates of fatty acyl-CoA esters. Biochim Biophys Acta. 1992 Mar 4;1124(2):101–111. doi: 10.1016/0005-2760(92)90085-a. [DOI] [PubMed] [Google Scholar]
  33. Washizaki K., Smith Q. R., Rapoport S. I., Purdon A. D. Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified [3H]arachidonate in the anesthetized rat. J Neurochem. 1994 Aug;63(2):727–736. doi: 10.1046/j.1471-4159.1994.63020727.x. [DOI] [PubMed] [Google Scholar]
  34. Wells M. A., Dittmer J. C. A comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain. Biochemistry. 1967 Oct;6(10):3169–3175. doi: 10.1021/bi00862a026. [DOI] [PubMed] [Google Scholar]
  35. Whittam R., Blond D. M. Respiratory control by an adenosine triphosphatase involved in active transport in brain cortex. Biochem J. 1964 Jul;92(1):147–158. doi: 10.1042/bj0920147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Williamson P., Schlegel R. A. Back and forth: the regulation and function of transbilayer phospholipid movement in eukaryotic cells. Mol Membr Biol. 1994 Oct-Dec;11(4):199–216. doi: 10.3109/09687689409160430. [DOI] [PubMed] [Google Scholar]
  37. Xie X. S., Stone D. K., Racker E. Purification of a vanadate-sensitive ATPase from clathrin-coated vesicles of bovine brain. J Biol Chem. 1989 Jan 25;264(3):1710–1714. [PubMed] [Google Scholar]
  38. Zachowski A., Fellman P., Devaux P. F. Absence of transbilayer diffusion of spin-labeled sphingomyelin on human erythrocytes. Comparison with the diffusion of several spin-labeled glycerophospholipids. Biochim Biophys Acta. 1985 May 28;815(3):510–514. doi: 10.1016/0005-2736(85)90380-3. [DOI] [PubMed] [Google Scholar]
  39. Zachowski A., Gaudry-Talarmain Y. M. Phospholipid transverse diffusion in synaptosomes: evidence for the involvement of the aminophospholipid translocase. J Neurochem. 1990 Oct;55(4):1352–1356. doi: 10.1111/j.1471-4159.1990.tb03146.x. [DOI] [PubMed] [Google Scholar]
  40. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993 Aug 15;294(Pt 1):1–14. doi: 10.1042/bj2940001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. de Kruijff B., van den Besselaar A. M., Cullis P. R., van den Bosch H., van Deenen L. L. Evidence for isotropic motion of phospholipids in liver microsomal membranes. A 31P NMR study. Biochim Biophys Acta. 1978 Dec 4;514(1):1–8. doi: 10.1016/0005-2736(78)90072-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES