Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Nov 1;335(Pt 3):465–480. doi: 10.1042/bj3350465

Signal transduction of stress via ceramide.

S Mathias 1, L A Peña 1, R N Kolesnick 1
PMCID: PMC1219804  PMID: 9794783

Abstract

The sphingomyelin (SM) pathway is a ubiquitous, evolutionarily conserved signalling system analogous to conventional systems such as the cAMP and phosphoinositide pathways. Ceramide, which serves as second messenger in this pathway, is generated from SM by the action of a neutral or acidic SMase, or by de novo synthesis co-ordinated through the enzyme ceramide synthase. A number of direct targets for ceramide action have now been identified, including ceramide-activated protein kinase, ceramide-activated protein phosphatase and protein kinase Czeta, which couple the SM pathway to well defined intracellular signalling cascades. The SM pathway induces differentiation, proliferation or growth arrest, depending on the cell type. Very often, however, the outcome of signalling through this pathway is apoptosis. Mammalian systems respond to diverse stresses with ceramide generation, and recent studies show that yeast manifest a form of this response. Thus ceramide signalling is an older stress response system than the caspase/apoptotic death pathway, and hence these two pathways must have become linked later in evolution. Signalling of the stress response through ceramide appears to play a role in the development of human diseases, including ischaemia/reperfusion injury, insulin resistance and diabetes, atherogenesis, septic shock and ovarian failure. Further, ceramide signalling mediates the therapeutic effects of chemotherapy and radiation in some cells. An understanding of the mechanisms by which ceramide regulates physiological and pathological events in specific cells may provide new targets for pharmacological intervention.

Full Text

The Full Text of this article is available as a PDF (392.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam-Klages S., Adam D., Wiegmann K., Struve S., Kolanus W., Schneider-Mergener J., Krönke M. FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell. 1996 Sep 20;86(6):937–947. doi: 10.1016/s0092-8674(00)80169-5. [DOI] [PubMed] [Google Scholar]
  2. Adam D., Wiegmann K., Adam-Klages S., Ruff A., Krönke M. A novel cytoplasmic domain of the p55 tumor necrosis factor receptor initiates the neutral sphingomyelinase pathway. J Biol Chem. 1996 Jun 14;271(24):14617–14622. doi: 10.1074/jbc.271.24.14617. [DOI] [PubMed] [Google Scholar]
  3. Agresti C., D'Urso D., Levi G. Reversible inhibitory effects of interferon-gamma and tumour necrosis factor-alpha on oligodendroglial lineage cell proliferation and differentiation in vitro. Eur J Neurosci. 1996 Jun;8(6):1106–1116. doi: 10.1111/j.1460-9568.1996.tb01278.x. [DOI] [PubMed] [Google Scholar]
  4. Allan-Yorke J., Record M., de Préval C., Davrinche C., Davignon J. L. Distinct pathways for tumor necrosis factor alpha and ceramides in human cytomegalovirus infection. J Virol. 1998 Mar;72(3):2316–2322. doi: 10.1128/jvi.72.3.2316-2322.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allouche M., Bettaieb A., Vindis C., Rousse A., Grignon C., Laurent G. Influence of Bcl-2 overexpression on the ceramide pathway in daunorubicin-induced apoptosis of leukemic cells. Oncogene. 1997 Apr 17;14(15):1837–1845. doi: 10.1038/sj.onc.1201023. [DOI] [PubMed] [Google Scholar]
  6. Andrieu N., Salvayre R., Jaffrézou J. P., Levade T. Low temperatures and hypertonicity do not block cytokine-induced stimulation of the sphingomyelin pathway but inhibit nuclear factor-kappa B activation. J Biol Chem. 1995 Oct 13;270(41):24518–24524. doi: 10.1074/jbc.270.41.24518. [DOI] [PubMed] [Google Scholar]
  7. Augé N., Andrieu N., Nègre-Salvayre A., Thiers J. C., Levade T., Salvayre R. The sphingomyelin-ceramide signaling pathway is involved in oxidized low density lipoprotein-induced cell proliferation. J Biol Chem. 1996 Aug 9;271(32):19251–19255. doi: 10.1074/jbc.271.32.19251. [DOI] [PubMed] [Google Scholar]
  8. Bajjalieh S. M., Martin T. F., Floor E. Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that co-purifies with brain synaptic vesicles. J Biol Chem. 1989 Aug 25;264(24):14354–14360. [PubMed] [Google Scholar]
  9. Ballou L. R., Barker S. C., Postlethwaite A. E., Kang A. H. Sphingosine potentiates IL-1-mediated prostaglandin E2 production in human fibroblasts. J Immunol. 1990 Dec 15;145(12):4245–4251. [PubMed] [Google Scholar]
  10. Ballou L. R., Chao C. P., Holness M. A., Barker S. C., Raghow R. Interleukin-1-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide. J Biol Chem. 1992 Oct 5;267(28):20044–20050. [PubMed] [Google Scholar]
  11. Ballou L. R., Laulederkind S. J., Rosloniec E. F., Raghow R. Ceramide signalling and the immune response. Biochim Biophys Acta. 1996 Jun 11;1301(3):273–287. doi: 10.1016/0005-2760(96)00004-5. [DOI] [PubMed] [Google Scholar]
  12. Balsinde J., Balboa M. A., Dennis E. A. Inflammatory activation of arachidonic acid signaling in murine P388D1 macrophages via sphingomyelin synthesis. J Biol Chem. 1997 Aug 15;272(33):20373–20377. doi: 10.1074/jbc.272.33.20373. [DOI] [PubMed] [Google Scholar]
  13. Barger S. W., Hörster D., Furukawa K., Goodman Y., Krieglstein J., Mattson M. P. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9328–9332. doi: 10.1073/pnas.92.20.9328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Begum N., Ragolia L., Srinivasan M. Effect of tumor necrosis factor-alpha on insulin-stimulated mitogen-activated protein kinase cascade in cultured rat skeletal muscle cells. Eur J Biochem. 1996 May 15;238(1):214–220. doi: 10.1111/j.1432-1033.1996.0214q.x. [DOI] [PubMed] [Google Scholar]
  15. Begum N., Ragolia L., Srinivasan M. Effect of tumor necrosis factor-alpha on insulin-stimulated mitogen-activated protein kinase cascade in cultured rat skeletal muscle cells. Eur J Biochem. 1996 May 15;238(1):214–220. doi: 10.1111/j.1432-1033.1996.0214q.x. [DOI] [PubMed] [Google Scholar]
  16. Bertolaso L., Gibellini D., Secchiero P., Previati M., Falgione D., Visani G., Rizzoli R., Capitani S., Zauli G. Accumulation of catalytically active PKC-zeta into the nucleus of HL-60 cell line plays a key role in the induction of granulocytic differentiation mediated by all-trans retinoic acid. Br J Haematol. 1998 Mar;100(3):541–549. doi: 10.1046/j.1365-2141.1998.00596.x. [DOI] [PubMed] [Google Scholar]
  17. Beutler B., Kruys V. Lipopolysaccharide signal transduction, regulation of tumor necrosis factor biosynthesis, and signaling by tumor necrosis factor itself. J Cardiovasc Pharmacol. 1995;25 (Suppl 2):S1–S8. doi: 10.1097/00005344-199500252-00002. [DOI] [PubMed] [Google Scholar]
  18. Bielawska A. E., Shapiro J. P., Jiang L., Melkonyan H. S., Piot C., Wolfe C. L., Tomei L. D., Hannun Y. A., Umansky S. R. Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am J Pathol. 1997 Nov;151(5):1257–1263. [PMC free article] [PubMed] [Google Scholar]
  19. Bilderback T. R., Grigsby R. J., Dobrowsky R. T. Association of p75(NTR) with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae. J Biol Chem. 1997 Apr 18;272(16):10922–10927. doi: 10.1074/jbc.272.16.10922. [DOI] [PubMed] [Google Scholar]
  20. Blöchl A., Sirrenberg C. Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors. J Biol Chem. 1996 Aug 30;271(35):21100–21107. doi: 10.1074/jbc.271.35.21100. [DOI] [PubMed] [Google Scholar]
  21. Boland M. P., Foster S. J., O'Neill L. A. Daunorubicin activates NFkappaB and induces kappaB-dependent gene expression in HL-60 promyelocytic and Jurkat T lymphoma cells. J Biol Chem. 1997 May 16;272(20):12952–12960. doi: 10.1074/jbc.272.20.12952. [DOI] [PubMed] [Google Scholar]
  22. Boldin M. P., Mett I. L., Varfolomeev E. E., Chumakov I., Shemer-Avni Y., Camonis J. H., Wallach D. Self-association of the "death domains" of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem. 1995 Jan 6;270(1):387–391. doi: 10.1074/jbc.270.1.387. [DOI] [PubMed] [Google Scholar]
  23. Bose R., Verheij M., Haimovitz-Friedman A., Scotto K., Fuks Z., Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell. 1995 Aug 11;82(3):405–414. doi: 10.1016/0092-8674(95)90429-8. [DOI] [PubMed] [Google Scholar]
  24. Boucher L. M., Wiegmann K., Fütterer A., Pfeffer K., Machleidt T., Schütze S., Mak T. W., Krönke M. CD28 signals through acidic sphingomyelinase. J Exp Med. 1995 Jun 1;181(6):2059–2068. doi: 10.1084/jem.181.6.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bradham C. A., Stachlewitz R. F., Gao W., Qian T., Jayadev S., Jenkins G., Hannun Y., Lemasters J. J., Thurman R. G., Brenner D. A. Reperfusion after liver transplantation in rats differentially activates the mitogen-activated protein kinases. Hepatology. 1997 May;25(5):1128–1135. doi: 10.1002/hep.510250514. [DOI] [PubMed] [Google Scholar]
  26. Bradshaw C. D., Ella K. M., Thomas A. L., Qi C., Meier K. E. Effects of Ara-C on neutral sphingomyelinase and mitogen- and stress-activated protein kinases in T-lymphocyte cell lines. Biochem Mol Biol Int. 1996 Nov;40(4):709–719. doi: 10.1080/15216549600201313. [DOI] [PubMed] [Google Scholar]
  27. Bredesen D. E., Rabizadeh S. p75NTR and apoptosis: Trk-dependent and Trk-independent effects. Trends Neurosci. 1997 Jul;20(7):287–290. doi: 10.1016/s0166-2236(96)01049-1. [DOI] [PubMed] [Google Scholar]
  28. Brenner B., Ferlinz K., Grassmé H., Weller M., Koppenhoefer U., Dichgans J., Sandhoff K., Lang F., Gulbins E. Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death Differ. 1998 Jan;5(1):29–37. doi: 10.1038/sj.cdd.4400307. [DOI] [PubMed] [Google Scholar]
  29. Brenner B., Koppenhoefer U., Weinstock C., Linderkamp O., Lang F., Gulbins E. Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem. 1997 Aug 29;272(35):22173–22181. doi: 10.1074/jbc.272.35.22173. [DOI] [PubMed] [Google Scholar]
  30. Brogi A., Strazza M., Melli M., Costantino-Ceccarini E. Induction of intracellular ceramide by interleukin-1 beta in oligodendrocytes. J Cell Biochem. 1997 Sep 15;66(4):532–541. doi: 10.1002/(sici)1097-4644(19970915)66:4<532::aid-jcb12>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  31. Brugg B., Michel P. P., Agid Y., Ruberg M. Ceramide induces apoptosis in cultured mesencephalic neurons. J Neurochem. 1996 Feb;66(2):733–739. doi: 10.1046/j.1471-4159.1996.66020733.x. [DOI] [PubMed] [Google Scholar]
  32. Bruno A. P., Laurent G., Averbeck D., Demur C., Bonnet J., Bettaïeb A., Levade T., Jaffrézou J. P. Lack of ceramide generation in TF-1 human myeloid leukemic cells resistant to ionizing radiation. Cell Death Differ. 1998 Feb;5(2):172–182. doi: 10.1038/sj.cdd.4400330. [DOI] [PubMed] [Google Scholar]
  33. Butterfield L., Storey B., Maas L., Heasley L. E. c-Jun NH2-terminal kinase regulation of the apoptotic response of small cell lung cancer cells to ultraviolet radiation. J Biol Chem. 1997 Apr 11;272(15):10110–10116. doi: 10.1074/jbc.272.15.10110. [DOI] [PubMed] [Google Scholar]
  34. Carlson C. D., Hart R. P. Activation of acidic sphingomyelinase and protein kinase C zeta is required for IL-1 induction of LIF mRNA in a Schwann cell line. Glia. 1996 Sep;18(1):49–58. doi: 10.1002/(SICI)1098-1136(199609)18:1<49::AID-GLIA5>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  35. Casaccia-Bonnefil P., Aibel L., Chao M. V. Central glial and neuronal populations display differential sensitivity to ceramide-dependent cell death. J Neurosci Res. 1996 Feb 1;43(3):382–389. doi: 10.1002/(SICI)1097-4547(19960201)43:3<382::AID-JNR13>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  36. Casaccia-Bonnefil P., Carter B. D., Dobrowsky R. T., Chao M. V. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature. 1996 Oct 24;383(6602):716–719. doi: 10.1038/383716a0. [DOI] [PubMed] [Google Scholar]
  37. Castedo M., Hirsch T., Susin S. A., Zamzami N., Marchetti P., Macho A., Kroemer G. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol. 1996 Jul 15;157(2):512–521. [PubMed] [Google Scholar]
  38. Chan G., Ochi A. Sphingomyelin-ceramide turnover in CD28 costimulatory signaling. Eur J Immunol. 1995 Jul;25(7):1999–2004. doi: 10.1002/eji.1830250730. [DOI] [PubMed] [Google Scholar]
  39. Chen J., Nikolova-Karakashian M., Merrill A. H., Jr, Morgan E. T. Regulation of cytochrome P450 2C11 (CYP2C11) gene expression by interleukin-1, sphingomyelin hydrolysis, and ceramides in rat hepatocytes. J Biol Chem. 1995 Oct 20;270(42):25233–25238. doi: 10.1074/jbc.270.42.25233. [DOI] [PubMed] [Google Scholar]
  40. Chen M., Quintans J., Fuks Z., Thompson C., Kufe D. W., Weichselbaum R. R. Suppression of Bcl-2 messenger RNA production may mediate apoptosis after ionizing radiation, tumor necrosis factor alpha, and ceramide. Cancer Res. 1995 Mar 1;55(5):991–994. [PubMed] [Google Scholar]
  41. Chinnaiyan A. M., O'Rourke K., Tewari M., Dixit V. M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 1995 May 19;81(4):505–512. doi: 10.1016/0092-8674(95)90071-3. [DOI] [PubMed] [Google Scholar]
  42. Chinnaiyan A. M., Tepper C. G., Seldin M. F., O'Rourke K., Kischkel F. C., Hellbardt S., Krammer P. H., Peter M. E., Dixit V. M. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem. 1996 Mar 1;271(9):4961–4965. doi: 10.1074/jbc.271.9.4961. [DOI] [PubMed] [Google Scholar]
  43. Chmura S. J., Mauceri H. J., Advani S., Heimann R., Beckett M. A., Nodzenski E., Quintans J., Kufe D. W., Weichselbaum R. R. Decreasing the apoptotic threshold of tumor cells through protein kinase C inhibition and sphingomyelinase activation increases tumor killing by ionizing radiation. Cancer Res. 1997 Oct 1;57(19):4340–4347. [PubMed] [Google Scholar]
  44. Chmura S. J., Nodzenski E., Beckett M. A., Kufe D. W., Quintans J., Weichselbaum R. R. Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res. 1997 Apr 1;57(7):1270–1275. [PubMed] [Google Scholar]
  45. Chmura S. J., Nodzenski E., Crane M. A., Virudachalam S., Hallahan D. E., Weichselbaum R. R., Quintans J. Cross-talk between ceramide and PKC activity in the control of apoptosis in WEHI-231. Adv Exp Med Biol. 1996;406:39–55. doi: 10.1007/978-1-4899-0274-0_5. [DOI] [PubMed] [Google Scholar]
  46. Chmura S. J., Nodzenski E., Weichselbaum R. R., Quintans J. Protein kinase C inhibition induces apoptosis and ceramide production through activation of a neutral sphingomyelinase. Cancer Res. 1996 Jun 15;56(12):2711–2714. [PubMed] [Google Scholar]
  47. Cifone M. G., Alesse E., Di Marzio L., Ruggeri B., Zazzeroni F., Moretti S., Famularo G., Steinberg S. M., Vullo E., De Simone C. Effect of L-carnitine treatment in vivo on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients. Proc Assoc Am Physicians. 1997 Mar;109(2):146–153. [PubMed] [Google Scholar]
  48. Cifone M. G., De Maria R., Roncaioli P., Rippo M. R., Azuma M., Lanier L. L., Santoni A., Testi R. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med. 1994 Oct 1;180(4):1547–1552. doi: 10.1084/jem.180.4.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Cifone M. G., Roncaioli P., De Maria R., Camarda G., Santoni A., Ruberti G., Testi R. Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J. 1995 Dec 1;14(23):5859–5868. doi: 10.1002/j.1460-2075.1995.tb00274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Cock J. G., Tepper A. D., de Vries E., van Blitterswijk W. J., Borst J. CD95 (Fas/APO-1) induces ceramide formation and apoptosis in the absence of a functional acid sphingomyelinase. J Biol Chem. 1998 Mar 27;273(13):7560–7565. doi: 10.1074/jbc.273.13.7560. [DOI] [PubMed] [Google Scholar]
  51. Coroneos E., Martinez M., McKenna S., Kester M. Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation. J Biol Chem. 1995 Oct 6;270(40):23305–23309. doi: 10.1074/jbc.270.40.23305. [DOI] [PubMed] [Google Scholar]
  52. Cuvillier O., Pirianov G., Kleuser B., Vanek P. G., Coso O. A., Gutkind S., Spiegel S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996 Jun 27;381(6585):800–803. doi: 10.1038/381800a0. [DOI] [PubMed] [Google Scholar]
  53. D'Souza S. D., Alinauskas K. A., Antel J. P. Ciliary neurotrophic factor selectively protects human oligodendrocytes from tumor necrosis factor-mediated injury. J Neurosci Res. 1996 Feb 1;43(3):289–298. doi: 10.1002/(SICI)1097-4547(19960201)43:3<289::AID-JNR4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  54. D'Souza S. D., Bonetti B., Balasingam V., Cashman N. R., Barker P. A., Troutt A. B., Raine C. S., Antel J. P. Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med. 1996 Dec 1;184(6):2361–2370. doi: 10.1084/jem.184.6.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Datta R., Kojima H., Banach D., Bump N. J., Talanian R. V., Alnemri E. S., Weichselbaum R. R., Wong W. W., Kufe D. W. Activation of a CrmA-insensitive, p35-sensitive pathway in ionizing radiation-induced apoptosis. J Biol Chem. 1997 Jan 17;272(3):1965–1969. doi: 10.1074/jbc.272.3.1965. [DOI] [PubMed] [Google Scholar]
  56. Datta R., Manome Y., Taneja N., Boise L. H., Weichselbaum R., Thompson C. B., Slapak C. A., Kufe D. Overexpression of Bcl-XL by cytotoxic drug exposure confers resistance to ionizing radiation-induced internucleosomal DNA fragmentation. Cell Growth Differ. 1995 Apr;6(4):363–370. [PubMed] [Google Scholar]
  57. Dbaibo G. S., Perry D. K., Gamard C. J., Platt R., Poirier G. G., Obeid L. M., Hannun Y. A. Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J Exp Med. 1997 Feb 3;185(3):481–490. doi: 10.1084/jem.185.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Dbaibo G. S., Pushkareva M. Y., Jayadev S., Schwarz J. K., Horowitz J. M., Obeid L. M., Hannun Y. A. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1347–1351. doi: 10.1073/pnas.92.5.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. De Maria R., Boirivant M., Cifone M. G., Roncaioli P., Hahne M., Tschopp J., Pallone F., Santoni A., Testi R. Functional expression of Fas and Fas ligand on human gut lamina propria T lymphocytes. A potential role for the acidic sphingomyelinase pathway in normal immunoregulation. J Clin Invest. 1996 Jan 15;97(2):316–322. doi: 10.1172/JCI118418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. De Maria R., Rippo M. R., Schuchman E. H., Testi R. Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med. 1998 Mar 16;187(6):897–902. doi: 10.1084/jem.187.6.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Decaudin D., Geley S., Hirsch T., Castedo M., Marchetti P., Macho A., Kofler R., Kroemer G. Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res. 1997 Jan 1;57(1):62–67. [PubMed] [Google Scholar]
  62. Denouel-Galy A., Douville E. M., Warne P. H., Papin C., Laugier D., Calothy G., Downward J., Eychène A. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol. 1998 Jan 1;8(1):46–55. doi: 10.1016/s0960-9822(98)70019-3. [DOI] [PubMed] [Google Scholar]
  63. Di Marzio L., Alesse E., Roncaioli P., Muzi P., Moretti S., Marcellini S., Amicosante G., De Simone C., Cifone M. G. Influence of L-carnitine on CD95 cross-lining-induced apoptosis and ceramide generation in human cell lines: correlation with its effects on purified acidic and neutral sphingomyelinases in vitro. Proc Assoc Am Physicians. 1997 Mar;109(2):154–163. [PubMed] [Google Scholar]
  64. Dickson R. C., Nagiec E. E., Skrzypek M., Tillman P., Wells G. B., Lester R. L. Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem. 1997 Nov 28;272(48):30196–30200. doi: 10.1074/jbc.272.48.30196. [DOI] [PubMed] [Google Scholar]
  65. Dobrowsky R. T., Hannun Y. A. Ceramide-activated protein phosphatase: partial purification and relationship to protein phosphatase 2A. Adv Lipid Res. 1993;25:91–104. [PubMed] [Google Scholar]
  66. Dobrowsky R. T., Jenkins G. M., Hannun Y. A. Neurotrophins induce sphingomyelin hydrolysis. Modulation by co-expression of p75NTR with Trk receptors. J Biol Chem. 1995 Sep 22;270(38):22135–22142. doi: 10.1074/jbc.270.38.22135. [DOI] [PubMed] [Google Scholar]
  67. Dobrowsky R. T., Kamibayashi C., Mumby M. C., Hannun Y. A. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem. 1993 Jul 25;268(21):15523–15530. [PubMed] [Google Scholar]
  68. Dobrowsky R. T., Werner M. H., Castellino A. M., Chao M. V., Hannun Y. A. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science. 1994 Sep 9;265(5178):1596–1599. doi: 10.1126/science.8079174. [DOI] [PubMed] [Google Scholar]
  69. Dressler K. A., Kan C. C., Kolesnick R. N. Sphingomyelin synthesis is involved in adherence during macrophage differentiation of HL-60 cells. J Biol Chem. 1991 Jun 25;266(18):11522–11527. [PubMed] [Google Scholar]
  70. Dressler K. A., Mathias S., Kolesnick R. N. Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell-free system. Science. 1992 Mar 27;255(5052):1715–1718. doi: 10.1126/science.1313189. [DOI] [PubMed] [Google Scholar]
  71. Duan R. D., Hertervig E., Nyberg L., Hauge T., Sternby B., Lillienau J., Farooqi A., Nilsson A. Distribution of alkaline sphingomyelinase activity in human beings and animals. Tissue and species differences. Dig Dis Sci. 1996 Sep;41(9):1801–1806. doi: 10.1007/BF02088748. [DOI] [PubMed] [Google Scholar]
  72. Ebadi M., Bashir R. M., Heidrick M. L., Hamada F. M., Refaey H. E., Hamed A., Helal G., Baxi M. D., Cerutis D. R., Lassi N. K. Neurotrophins and their receptors in nerve injury and repair. Neurochem Int. 1997 Apr-May;30(4-5):347–374. doi: 10.1016/s0197-0186(96)00071-x. [DOI] [PubMed] [Google Scholar]
  73. Edsall L. C., Pirianov G. G., Spiegel S. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J Neurosci. 1997 Sep 15;17(18):6952–6960. doi: 10.1523/JNEUROSCI.17-18-06952.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Fang W., Nath K. A., Mackey M. F., Noelle R. J., Mueller D. L., Behrens T. W. CD40 inhibits B cell apoptosis by upregulating bcl-xL expression and blocking oxidant accumulation. Am J Physiol. 1997 Mar;272(3 Pt 1):C950–C956. doi: 10.1152/ajpcell.1997.272.3.C950. [DOI] [PubMed] [Google Scholar]
  75. Fanger G. R., Gerwins P., Widmann C., Jarpe M. B., Johnson G. L. MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr Opin Genet Dev. 1997 Feb;7(1):67–74. doi: 10.1016/s0959-437x(97)80111-6. [DOI] [PubMed] [Google Scholar]
  76. Farschon D. M., Couture C., Mustelin T., Newmeyer D. D. Temporal phases in apoptosis defined by the actions of Src homology 2 domains, ceramide, Bcl-2, interleukin-1beta converting enzyme family proteases, and a dense membrane fraction. J Cell Biol. 1997 Jun 2;137(5):1117–1125. doi: 10.1083/jcb.137.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Feinstein E., Kimchi A., Wallach D., Boldin M., Varfolomeev E. The death domain: a module shared by proteins with diverse cellular functions. Trends Biochem Sci. 1995 Sep;20(9):342–344. doi: 10.1016/s0968-0004(00)89070-2. [DOI] [PubMed] [Google Scholar]
  78. Ferlinz K., Hurwitz R., Vielhaber G., Suzuki K., Sandhoff K. Occurrence of two molecular forms of human acid sphingomyelinase. Biochem J. 1994 Aug 1;301(Pt 3):855–862. doi: 10.1042/bj3010855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Ferrer I., Ballabriga J., Pozas E. Transient forebrain ischemia in the adult gerbil is associated with a complex c-Jun response. Neuroreport. 1997 Jul 28;8(11):2483–2487. doi: 10.1097/00001756-199707280-00014. [DOI] [PubMed] [Google Scholar]
  80. Fiebich B. L., Lieb K., Berger M., Bauer J. Stimulation of the sphingomyelin pathway induces interleukin-6 gene expression in human astrocytoma cells. J Neuroimmunol. 1995 Dec 31;63(2):207–211. doi: 10.1016/0165-5728(95)00145-x. [DOI] [PubMed] [Google Scholar]
  81. Fishbein J. D., Dobrowsky R. T., Bielawska A., Garrett S., Hannun Y. A. Ceramide-mediated growth inhibition and CAPP are conserved in Saccharomyces cerevisiae. J Biol Chem. 1993 May 5;268(13):9255–9261. [PubMed] [Google Scholar]
  82. France-Lanord V., Brugg B., Michel P. P., Agid Y., Ruberg M. Mitochondrial free radical signal in ceramide-dependent apoptosis: a putative mechanism for neuronal death in Parkinson's disease. J Neurochem. 1997 Oct;69(4):1612–1621. doi: 10.1046/j.1471-4159.1997.69041612.x. [DOI] [PubMed] [Google Scholar]
  83. Fuks Z., Persaud R. S., Alfieri A., McLoughlin M., Ehleiter D., Schwartz J. L., Seddon A. P., Cordon-Cardo C., Haimovitz-Friedman A. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res. 1994 May 15;54(10):2582–2590. [PubMed] [Google Scholar]
  84. Fuortes M., Jin W., Nathan C. Ceramide selectively inhibits early events in the response of human neutrophils to tumor necrosis factor. J Leukoc Biol. 1996 Mar;59(3):451–460. doi: 10.1002/jlb.59.3.451. [DOI] [PubMed] [Google Scholar]
  85. Galve-Roperh I., Haro A., Díaz-Laviada I. Ceramide-induced translocation of protein kinase C zeta in primary cultures of astrocytes. FEBS Lett. 1997 Oct 6;415(3):271–274. doi: 10.1016/s0014-5793(97)00985-x. [DOI] [PubMed] [Google Scholar]
  86. Galve-Roperh I., Haro A., Díaz-Laviada I. Induction of nerve growth factor synthesis by sphingomyelinase and ceramide in primary astrocyte cultures. Brain Res Mol Brain Res. 1997 Dec 1;52(1):90–97. doi: 10.1016/s0169-328x(97)00230-1. [DOI] [PubMed] [Google Scholar]
  87. Gamen S., Marzo I., Anel A., Piñeiro A., Naval J. CPP32 inhibition prevents Fas-induced ceramide generation and apoptosis in human cells. FEBS Lett. 1996 Jul 22;390(2):232–237. doi: 10.1016/0014-5793(96)00666-7. [DOI] [PubMed] [Google Scholar]
  88. García-Ruiz C., Colell A., Marí M., Morales A., Fernández-Checa J. C. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997 Apr 25;272(17):11369–11377. doi: 10.1074/jbc.272.17.11369. [DOI] [PubMed] [Google Scholar]
  89. Garzotto M., White-Jones M., Jiang Y., Ehleiter D., Liao W. C., Haimovitz-Friedman A., Fuks Z., Kolesnick R. 12-O-tetradecanoylphorbol-13-acetate-induced apoptosis in LNCaP cells is mediated through ceramide synthase. Cancer Res. 1998 May 15;58(10):2260–2264. [PubMed] [Google Scholar]
  90. Geley S., Hartmann B. L., Kofler R. Ceramides induce a form of apoptosis in human acute lymphoblastic leukemia cells that is inhibited by Bcl-2, but not by CrmA. FEBS Lett. 1997 Jan 2;400(1):15–18. doi: 10.1016/s0014-5793(96)01284-7. [DOI] [PubMed] [Google Scholar]
  91. Gomez-Muñoz A., Frago L. M., Alvarez L., Varela-Nieto I. Stimulation of DNA synthesis by natural ceramide 1-phosphate. Biochem J. 1997 Jul 15;325(Pt 2):435–440. doi: 10.1042/bj3250435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Goodman Y., Mattson M. P. Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid beta-peptide toxicity. J Neurochem. 1996 Feb;66(2):869–872. doi: 10.1046/j.1471-4159.1996.66020869.x. [DOI] [PubMed] [Google Scholar]
  93. Gottschalk A. R., McShan C. L., Kilkus J., Dawson G., Quintáns J. Resistance to anti-IgM-induced apoptosis in a WEHI-231 subline is due to insufficient production of ceramide. Eur J Immunol. 1995 Apr;25(4):1032–1038. doi: 10.1002/eji.1830250426. [DOI] [PubMed] [Google Scholar]
  94. Grassmé H., Gulbins E., Brenner B., Ferlinz K., Sandhoff K., Harzer K., Lang F., Meyer T. F. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell. 1997 Nov 28;91(5):605–615. doi: 10.1016/s0092-8674(00)80448-1. [DOI] [PubMed] [Google Scholar]
  95. Gubina E., Rinaudo M. S., Szallasi Z., Blumberg P. M., Mufson R. A. Overexpression of protein kinase C isoform epsilon but not delta in human interleukin-3-dependent cells suppresses apoptosis and induces bcl-2 expression. Blood. 1998 Feb 1;91(3):823–829. [PubMed] [Google Scholar]
  96. Gudz T. I., Tserng K. Y., Hoppel C. L. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem. 1997 Sep 26;272(39):24154–24158. doi: 10.1074/jbc.272.39.24154. [DOI] [PubMed] [Google Scholar]
  97. Gulbins E., Bissonnette R., Mahboubi A., Martin S., Nishioka W., Brunner T., Baier G., Baier-Bitterlich G., Byrd C., Lang F. FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity. 1995 Apr;2(4):341–351. doi: 10.1016/1074-7613(95)90142-6. [DOI] [PubMed] [Google Scholar]
  98. Haddad E. B., Rousell J., Lindsay M. A., Barnes P. J. Synergy between tumor necrosis factor alpha and interleukin 1beta in inducing transcriptional down-regulation of muscarinic M2 receptor gene expression. Involvement of protein kinase A and ceramide pathways. J Biol Chem. 1996 Dec 20;271(51):32586–32592. doi: 10.1074/jbc.271.51.32586. [DOI] [PubMed] [Google Scholar]
  99. Haimovitz-Friedman A., Balaban N., McLoughlin M., Ehleiter D., Michaeli J., Vlodavsky I., Fuks Z. Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res. 1994 May 15;54(10):2591–2597. [PubMed] [Google Scholar]
  100. Haimovitz-Friedman A., Cordon-Cardo C., Bayoumy S., Garzotto M., McLoughlin M., Gallily R., Edwards C. K., 3rd, Schuchman E. H., Fuks Z., Kolesnick R. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med. 1997 Dec 1;186(11):1831–1841. doi: 10.1084/jem.186.11.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Haimovitz-Friedman A., Kan C. C., Ehleiter D., Persaud R. S., McLoughlin M., Fuks Z., Kolesnick R. N. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 1994 Aug 1;180(2):525–535. doi: 10.1084/jem.180.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Haimovitz-Friedman A., Kolesnick R. N., Fuks Z. Differential inhibition of radiation-induced apoptosis. Stem Cells. 1997;15 (Suppl 2):43–47. doi: 10.1002/stem.5530150708. [DOI] [PubMed] [Google Scholar]
  103. Haimovitz-Friedman A, Kolesnick RN, Fuks Z. Modulation of the Apoptotic Response: Potential for Improving the Outcome in Clinical Radiotherapy. Semin Radiat Oncol. 1996 Oct;6(4):273–283. doi: 10.1053/SRAO00600273. [DOI] [PubMed] [Google Scholar]
  104. Hallahan D. E., Virudachalam S., Grdina D., Weichselbaum R. R. The isoquinoline sulfonamide H7 attenuates radiation-mediated protein kinase C activation and delays the onset of x-ray-induced G2 arrest. Int J Radiat Oncol Biol Phys. 1992;24(4):687–692. doi: 10.1016/0360-3016(92)90715-t. [DOI] [PubMed] [Google Scholar]
  105. Hallahan D. E., Virudachalam S., Schwartz J. L., Panje N., Mustafi R., Weichselbaum R. R. Inhibition of protein kinases sensitizes human tumor cells to ionizing radiation. Radiat Res. 1992 Mar;129(3):345–350. [PubMed] [Google Scholar]
  106. Hallahan D. E., Virudachalam S., Sherman M. L., Huberman E., Kufe D. W., Weichselbaum R. R. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation. Cancer Res. 1991 Sep 1;51(17):4565–4569. [PubMed] [Google Scholar]
  107. Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
  108. Hartfield P. J., Mayne G. C., Murray A. W. Ceramide induces apoptosis in PC12 cells. FEBS Lett. 1997 Jan 20;401(2-3):148–152. doi: 10.1016/s0014-5793(96)01460-3. [DOI] [PubMed] [Google Scholar]
  109. Hayakawa M., Jayadev S., Tsujimoto M., Hannun Y. A., Ito F. Role of ceramide in stimulation of the transcription of cytosolic phospholipase A2 and cyclooxygenase 2. Biochem Biophys Res Commun. 1996 Mar 27;220(3):681–686. doi: 10.1006/bbrc.1996.0464. [DOI] [PubMed] [Google Scholar]
  110. Herr I., Wilhelm D., Böhler T., Angel P., Debatin K. M. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J. 1997 Oct 15;16(20):6200–6208. doi: 10.1093/emboj/16.20.6200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Herrmann J. L., Bruckheimer E., McDonnell T. J. Cell death signal transduction and Bcl-2 function. Biochem Soc Trans. 1996 Nov;24(4):1059–1065. doi: 10.1042/bst0241059. [DOI] [PubMed] [Google Scholar]
  112. Herrmann J. L., Menter D. G., Beham A., von Eschenbach A., McDonnell T. J. Regulation of lipid signaling pathways for cell survival and apoptosis by bcl-2 in prostate carcinoma cells. Exp Cell Res. 1997 Aug 1;234(2):442–451. doi: 10.1006/excr.1997.3653. [DOI] [PubMed] [Google Scholar]
  113. Hisahara S., Shoji S., Okano H., Miura M. ICE/CED-3 family executes oligodendrocyte apoptosis by tumor necrosis factor. J Neurochem. 1997 Jul;69(1):10–20. doi: 10.1046/j.1471-4159.1997.69010010.x. [DOI] [PubMed] [Google Scholar]
  114. Hofmeister R., Wiegmann K., Korherr C., Bernardo K., Krönke M., Falk W. Activation of acid sphingomyelinase by interleukin-1 (IL-1) requires the IL-1 receptor accessory protein. J Biol Chem. 1997 Oct 31;272(44):27730–27736. doi: 10.1074/jbc.272.44.27730. [DOI] [PubMed] [Google Scholar]
  115. Horinouchi K., Erlich S., Perl D. P., Ferlinz K., Bisgaier C. L., Sandhoff K., Desnick R. J., Stewart C. L., Schuchman E. H. Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nat Genet. 1995 Jul;10(3):288–293. doi: 10.1038/ng0795-288. [DOI] [PubMed] [Google Scholar]
  116. Hotamisligil G. S., Budavari A., Murray D., Spiegelman B. M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest. 1994 Oct;94(4):1543–1549. doi: 10.1172/JCI117495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Hotamisligil G. S., Murray D. L., Choy L. N., Spiegelman B. M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4854–4858. doi: 10.1073/pnas.91.11.4854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Hotamisligil G. S., Peraldi P., Budavari A., Ellis R., White M. F., Spiegelman B. M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996 Feb 2;271(5249):665–668. doi: 10.1126/science.271.5249.665. [DOI] [PubMed] [Google Scholar]
  119. Hotamisligil G. S., Shargill N. S., Spiegelman B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993 Jan 1;259(5091):87–91. doi: 10.1126/science.7678183. [DOI] [PubMed] [Google Scholar]
  120. Hsu H., Xiong J., Goeddel D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995 May 19;81(4):495–504. doi: 10.1016/0092-8674(95)90070-5. [DOI] [PubMed] [Google Scholar]
  121. Huang C., Ma W. y., Ding M., Bowden G. T., Dong Z. Direct evidence for an important role of sphingomyelinase in ultraviolet-induced activation of c-Jun N-terminal kinase. J Biol Chem. 1997 Oct 31;272(44):27753–27757. doi: 10.1074/jbc.272.44.27753. [DOI] [PubMed] [Google Scholar]
  122. Hunot S., Brugg B., Ricard D., Michel P. P., Muriel M. P., Ruberg M., Faucheux B. A., Agid Y., Hirsch E. C. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7531–7536. doi: 10.1073/pnas.94.14.7531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Hurwitz R., Ferlinz K., Vielhaber G., Moczall H., Sandhoff K. Processing of human acid sphingomyelinase in normal and I-cell fibroblasts. J Biol Chem. 1994 Feb 18;269(7):5440–5445. [PubMed] [Google Scholar]
  124. Huwiler A., Brunner J., Hummel R., Vervoordeldonk M., Stabel S., van den Bosch H., Pfeilschifter J. Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6959–6963. doi: 10.1073/pnas.93.14.6959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Ito A., Horigome K. Ceramide prevents neuronal programmed cell death induced by nerve growth factor deprivation. J Neurochem. 1995 Jul;65(1):463–466. doi: 10.1046/j.1471-4159.1995.65010463.x. [DOI] [PubMed] [Google Scholar]
  126. Jaffrézou J. P., Levade T., Bettaïeb A., Andrieu N., Bezombes C., Maestre N., Vermeersch S., Rousse A., Laurent G. Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J. 1996 May 15;15(10):2417–2424. [PMC free article] [PubMed] [Google Scholar]
  127. Jarvis W. D., Fornari F. A., Jr, Browning J. L., Gewirtz D. A., Kolesnick R. N., Grant S. Attenuation of ceramide-induced apoptosis by diglyceride in human myeloid leukemia cells. J Biol Chem. 1994 Dec 16;269(50):31685–31692. [PubMed] [Google Scholar]
  128. Jayadev S., Liu B., Bielawska A. E., Lee J. Y., Nazaire F., Pushkareva MYu, Obeid L. M., Hannun Y. A. Role for ceramide in cell cycle arrest. J Biol Chem. 1995 Feb 3;270(5):2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
  129. Jenkins G. M., Richards A., Wahl T., Mao C., Obeid L., Hannun Y. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem. 1997 Dec 19;272(51):32566–32572. doi: 10.1074/jbc.272.51.32566. [DOI] [PubMed] [Google Scholar]
  130. Johns D. G., Osborn H., Webb R. C. Ceramide: a novel cell signaling mechanism for vasodilation. Biochem Biophys Res Commun. 1997 Aug 8;237(1):95–97. doi: 10.1006/bbrc.1997.7084. [DOI] [PubMed] [Google Scholar]
  131. Joseph C. K., Byun H. S., Bittman R., Kolesnick R. N. Substrate recognition by ceramide-activated protein kinase. Evidence that kinase activity is proline-directed. J Biol Chem. 1993 Sep 25;268(27):20002–20006. [PubMed] [Google Scholar]
  132. Kaipia A., Chun S. Y., Eisenhauer K., Hsueh A. J. Tumor necrosis factor-alpha and its second messenger, ceramide, stimulate apoptosis in cultured ovarian follicles. Endocrinology. 1996 Nov;137(11):4864–4870. doi: 10.1210/endo.137.11.8895358. [DOI] [PubMed] [Google Scholar]
  133. Kanety H., Hemi R., Papa M. Z., Karasik A. Sphingomyelinase and ceramide suppress insulin-induced tyrosine phosphorylation of the insulin receptor substrate-1. J Biol Chem. 1996 Apr 26;271(17):9895–9897. doi: 10.1074/jbc.271.17.9895. [DOI] [PubMed] [Google Scholar]
  134. Kaplan D. R., Miller F. D. Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol. 1997 Apr;9(2):213–221. doi: 10.1016/s0955-0674(97)80065-8. [DOI] [PubMed] [Google Scholar]
  135. Karim F. D., Rubin G. M. Ectopic expression of activated Ras1 induces hyperplastic growth and increased cell death in Drosophila imaginal tissues. Development. 1998 Jan;125(1):1–9. doi: 10.1242/dev.125.1.1. [DOI] [PubMed] [Google Scholar]
  136. Karsan A., Yee E., Harlan J. M. Endothelial cell death induced by tumor necrosis factor-alpha is inhibited by the Bcl-2 family member, A1. J Biol Chem. 1996 Nov 1;271(44):27201–27204. doi: 10.1074/jbc.271.44.27201. [DOI] [PubMed] [Google Scholar]
  137. Kasibhatla S., Brunner T., Genestier L., Echeverri F., Mahboubi A., Green D. R. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell. 1998 Mar;1(4):543–551. doi: 10.1016/s1097-2765(00)80054-4. [DOI] [PubMed] [Google Scholar]
  138. Keane R. W., Srinivasan A., Foster L. M., Testa M. P., Ord T., Nonner D., Wang H. G., Reed J. C., Bredesen D. E., Kayalar C. Activation of CPP32 during apoptosis of neurons and astrocytes. J Neurosci Res. 1997 Apr 15;48(2):168–180. doi: 10.1002/(sici)1097-4547(19970415)48:2<168::aid-jnr9>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  139. Kim C. Y., Giaccia A. J., Strulovici B., Brown J. M. Differential expression of protein kinase C epsilon protein in lung cancer cell lines by ionising radiation. Br J Cancer. 1992 Nov;66(5):844–849. doi: 10.1038/bjc.1992.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Kim M. Y., Linardic C., Obeid L., Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem. 1991 Jan 5;266(1):484–489. [PubMed] [Google Scholar]
  141. Kinscherf R., Claus R., Deigner H. P., Nauen O., Gehrke C., Hermetter A., Russwurm S., Daniel V., Hack V., Metz J. Modified low density lipoprotein delivers substrate for ceramide formation and stimulates the sphingomyelin-ceramide pathway in human macrophages. FEBS Lett. 1997 Mar 17;405(1):55–59. doi: 10.1016/s0014-5793(97)00157-9. [DOI] [PubMed] [Google Scholar]
  142. Kluck R. M., Bossy-Wetzel E., Green D. R., Newmeyer D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997 Feb 21;275(5303):1132–1136. doi: 10.1126/science.275.5303.1132. [DOI] [PubMed] [Google Scholar]
  143. Kojima H., Datta R. Involvement of a CrmA-insensitive ICE/Ced-3-like protease in ceramide-induced apoptosis. Oncol Res. 1996;8(12):497–501. [PubMed] [Google Scholar]
  144. Kolesnick R. N., Hemer M. R. Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. J Biol Chem. 1990 Nov 5;265(31):18803–18808. [PubMed] [Google Scholar]
  145. Kolesnick R. N. Sphingomyelin and derivatives as cellular signals. Prog Lipid Res. 1991;30(1):1–38. doi: 10.1016/0163-7827(91)90005-p. [DOI] [PubMed] [Google Scholar]
  146. Kolesnick R., Fuks Z. Ceramide: a signal for apoptosis or mitogenesis? J Exp Med. 1995 Jun 1;181(6):1949–1952. doi: 10.1084/jem.181.6.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Kolesnick R., Golde D. W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell. 1994 May 6;77(3):325–328. doi: 10.1016/0092-8674(94)90147-3. [DOI] [PubMed] [Google Scholar]
  148. Kornfeld K., Hom D. B., Horvitz H. R. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell. 1995 Dec 15;83(6):903–913. doi: 10.1016/0092-8674(95)90206-6. [DOI] [PubMed] [Google Scholar]
  149. Kowluru A., Metz S. A. Ceramide-activated protein phosphatase-2A activity in insulin-secreting cells. FEBS Lett. 1997 Nov 24;418(1-2):179–182. doi: 10.1016/s0014-5793(97)01379-3. [DOI] [PubMed] [Google Scholar]
  150. Kroemer G., Zamzami N., Susin S. A. Mitochondrial control of apoptosis. Immunol Today. 1997 Jan;18(1):44–51. doi: 10.1016/s0167-5699(97)80014-x. [DOI] [PubMed] [Google Scholar]
  151. Kubota M., Kitahara S., Shimasaki H., Ueta N. Accumulation of ceramide in ischemic human brain of an acute case of cerebral occlusion. Jpn J Exp Med. 1989 Apr;59(2):59–64. [PubMed] [Google Scholar]
  152. Kubota M., Narita K., Nakagomi T., Tamura A., Shimasaki H., Ueta N., Yoshida S. Sphingomyelin changes in rat cerebral cortex during focal ischemia. Neurol Res. 1996 Aug;18(4):337–341. doi: 10.1080/01616412.1996.11740432. [DOI] [PubMed] [Google Scholar]
  153. Kubota M., Tomukai N., Kitahara S., Nakagomi T., Tamura A., Hisaki H., Shimasaki H., Ueta N. [Sphingolipid changes in rat cerebral cortex during focal ischemia--how does ceramide accumulate in an ischemic condition?]. No To Shinkei. 1995 Aug;47(8):756–761. [PubMed] [Google Scholar]
  154. Kumar S., Peña L. A., de Vellis J. CNS glial cells express neurotrophin receptors whose levels are regulated by NGF. Brain Res Mol Brain Res. 1993 Jan;17(1-2):163–168. doi: 10.1016/0169-328x(93)90086-5. [DOI] [PubMed] [Google Scholar]
  155. Kuroki J., Hirokawa M., Kitabayashi A., Lee M., Horiuchi T., Kawabata Y., Miura A. B. Cell-permeable ceramide inhibits the growth of B lymphoma Raji cells lacking TNF-alpha-receptors by inducing G0/G1 arrest but not apoptosis: a new model for dissecting cell-cycle arrest and apoptosis. Leukemia. 1996 Dec;10(12):1950–1958. [PubMed] [Google Scholar]
  156. Kyriakis J. M., Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem. 1996 Oct 4;271(40):24313–24316. doi: 10.1074/jbc.271.40.24313. [DOI] [PubMed] [Google Scholar]
  157. Ladiwala U., Lachance C., Simoneau S. J., Bhakar A., Barker P. A., Antel J. P. p75 neurotrophin receptor expression on adult human oligodendrocytes: signaling without cell death in response to NGF. J Neurosci. 1998 Feb 15;18(4):1297–1304. doi: 10.1523/JNEUROSCI.18-04-01297.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Lanterman M. M., Saba J. D. Characterization of sphingosine kinase (SK) activity in Saccharomyces cerevisiae and isolation of SK-deficient mutants. Biochem J. 1998 Jun 1;332(Pt 2):525–531. doi: 10.1042/bj3320525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Larocca J. N., Farooq M., Norton W. T. Induction of oligodendrocyte apoptosis by C2-ceramide. Neurochem Res. 1997 Apr;22(4):529–534. doi: 10.1023/a:1027332415877. [DOI] [PubMed] [Google Scholar]
  160. Latinis K. M., Koretzky G. A. Fas ligation induces apoptosis and Jun kinase activation independently of CD45 and Lck in human T cells. Blood. 1996 Feb 1;87(3):871–875. [PubMed] [Google Scholar]
  161. Law B., Rossie S. The dimeric and catalytic subunit forms of protein phosphatase 2A from rat brain are stimulated by C2-ceramide. J Biol Chem. 1995 May 26;270(21):12808–12813. doi: 10.1074/jbc.270.21.12808. [DOI] [PubMed] [Google Scholar]
  162. Lazarovici P., Rasouly D., Friedman L., Tabekman R., Ovadia H., Matsuda Y. K252a and staurosporine microbial alkaloid toxins as prototype of neurotropic drugs. Adv Exp Med Biol. 1996;391:367–377. doi: 10.1007/978-1-4613-0361-9_31. [DOI] [PubMed] [Google Scholar]
  163. Liu B., Andrieu-Abadie N., Levade T., Zhang P., Obeid L. M., Hannun Y. A. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem. 1998 May 1;273(18):11313–11320. doi: 10.1074/jbc.273.18.11313. [DOI] [PubMed] [Google Scholar]
  164. Liu B., Hannun Y. A. Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem. 1997 Jun 27;272(26):16281–16287. doi: 10.1074/jbc.272.26.16281. [DOI] [PubMed] [Google Scholar]
  165. Liu J., Mathias S., Yang Z., Kolesnick R. N. Renaturation and tumor necrosis factor-alpha stimulation of a 97-kDa ceramide-activated protein kinase. J Biol Chem. 1994 Jan 28;269(4):3047–3052. [PubMed] [Google Scholar]
  166. Liu P., Anderson R. G. Compartmentalized production of ceramide at the cell surface. J Biol Chem. 1995 Nov 10;270(45):27179–27185. doi: 10.1074/jbc.270.45.27179. [DOI] [PubMed] [Google Scholar]
  167. Liu Z. G., Hsu H., Goeddel D. V., Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell. 1996 Nov 1;87(3):565–576. doi: 10.1016/s0092-8674(00)81375-6. [DOI] [PubMed] [Google Scholar]
  168. Long S. D., Pekala P. H. Lipid mediators of insulin resistance: ceramide signalling down-regulates GLUT4 gene transcription in 3T3-L1 adipocytes. Biochem J. 1996 Oct 1;319(Pt 1):179–184. doi: 10.1042/bj3190179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Lozano J., Berra E., Municio M. M., Diaz-Meco M. T., Dominguez I., Sanz L., Moscat J. Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem. 1994 Jul 29;269(30):19200–19202. [PubMed] [Google Scholar]
  170. Lozanski G., Berthier F., Kushner I. The sphingomyelin-ceramide pathway participates in cytokine regulation of C-reactive protein and serum amyloid A, but not alpha-fibrinogen. Biochem J. 1997 Nov 15;328(Pt 1):271–275. doi: 10.1042/bj3280271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. MacPhee I. J., Barker P. A. Brain-derived neurotrophic factor binding to the p75 neurotrophin receptor reduces TrkA signaling while increasing serine phosphorylation in the TrkA intracellular domain. J Biol Chem. 1997 Sep 19;272(38):23547–23551. doi: 10.1074/jbc.272.38.23547. [DOI] [PubMed] [Google Scholar]
  172. Mandala S. M., Thornton R., Tu Z., Kurtz M. B., Nickels J., Broach J., Menzeleev R., Spiegel S. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):150–155. doi: 10.1073/pnas.95.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Manev H., Cagnoli C. M. Ceramide-mediated and isoquinolinesulfonamide-sensitive pathways of neuronal death: anything in common? Neurochem Int. 1997 Aug;31(2):203–206. doi: 10.1016/s0197-0186(96)00149-0. [DOI] [PubMed] [Google Scholar]
  174. Mansat V., Laurent G., Levade T., Bettaïeb A., Jaffrézou J. P. The protein kinase C activators phorbol esters and phosphatidylserine inhibit neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin. Cancer Res. 1997 Dec 1;57(23):5300–5304. [PubMed] [Google Scholar]
  175. Marathe S., Schissel S. L., Yellin M. J., Beatini N., Mintzer R., Williams K. J., Tabas I. Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem. 1998 Feb 13;273(7):4081–4088. doi: 10.1074/jbc.273.7.4081. [DOI] [PubMed] [Google Scholar]
  176. Martin S. J., Newmeyer D. D., Mathias S., Farschon D. M., Wang H. G., Reed J. C., Kolesnick R. N., Green D. R. Cell-free reconstitution of Fas-, UV radiation- and ceramide-induced apoptosis. EMBO J. 1995 Nov 1;14(21):5191–5200. doi: 10.1002/j.1460-2075.1995.tb00203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Masamune A., Igarashi Y., Hakomori S. Regulatory role of ceramide in interleukin (IL)-1 beta-induced E-selectin expression in human umbilical vein endothelial cells. Ceramide enhances IL-1 beta action, but is not sufficient for E-selectin expression. J Biol Chem. 1996 Apr 19;271(16):9368–9375. doi: 10.1074/jbc.271.16.9368. [DOI] [PubMed] [Google Scholar]
  178. Masamune A., Igarashi Y., Hakomori S. Regulatory role of ceramide in interleukin (IL)-1 beta-induced E-selectin expression in human umbilical vein endothelial cells. Ceramide enhances IL-1 beta action, but is not sufficient for E-selectin expression. J Biol Chem. 1996 Apr 19;271(16):9368–9375. doi: 10.1074/jbc.271.16.9368. [DOI] [PubMed] [Google Scholar]
  179. Mathias S., Dressler K. A., Kolesnick R. N. Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10009–10013. doi: 10.1073/pnas.88.22.10009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Mathias S., Younes A., Kan C. C., Orlow I., Joseph C., Kolesnick R. N. Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science. 1993 Jan 22;259(5094):519–522. doi: 10.1126/science.8424175. [DOI] [PubMed] [Google Scholar]
  181. Mattson M. P., Barger S. W., Furukawa K., Bruce A. J., Wyss-Coray T., Mark R. J., Mucke L. Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer's disease. Brain Res Brain Res Rev. 1997 Feb;23(1-2):47–61. doi: 10.1016/s0165-0173(96)00014-8. [DOI] [PubMed] [Google Scholar]
  182. Mattson M. P., Goodman Y., Luo H., Fu W., Furukawa K. Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res. 1997 Sep 15;49(6):681–697. doi: 10.1002/(SICI)1097-4547(19970915)49:6<681::AID-JNR3>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  183. McDonough P. M., Yasui K., Betto R., Salviati G., Glembotski C. C., Palade P. T., Sabbadini R. A. Control of cardiac Ca2+ levels. Inhibitory actions of sphingosine on Ca2+ transients and L-type Ca2+ channel conductance. Circ Res. 1994 Dec;75(6):981–989. doi: 10.1161/01.res.75.6.981. [DOI] [PubMed] [Google Scholar]
  184. Merrill A. H., Jr, Schmelz E. M., Dillehay D. L., Spiegel S., Shayman J. A., Schroeder J. J., Riley R. T., Voss K. A., Wang E. Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol. 1997 Jan;142(1):208–225. doi: 10.1006/taap.1996.8029. [DOI] [PubMed] [Google Scholar]
  185. Merrill A. H., Jr, Wang E., Mullins R. E., Jamison W. C., Nimkar S., Liotta D. C. Quantitation of free sphingosine in liver by high-performance liquid chromatography. Anal Biochem. 1988 Jun;171(2):373–381. doi: 10.1016/0003-2697(88)90500-3. [DOI] [PubMed] [Google Scholar]
  186. Merrill A. H., Jr, Wang E., Vales T. R., Smith E. R., Schroeder J. J., Menaldino D. S., Alexander C., Crane H. M., Xia J., Liotta D. C. Fumonisin toxicity and sphingolipid biosynthesis. Adv Exp Med Biol. 1996;392:297–306. doi: 10.1007/978-1-4899-1379-1_25. [DOI] [PubMed] [Google Scholar]
  187. Michael J. M., Lavin M. F., Watters D. J. Resistance to radiation-induced apoptosis in Burkitt's lymphoma cells is associated with defective ceramide signaling. Cancer Res. 1997 Aug 15;57(16):3600–3605. [PubMed] [Google Scholar]
  188. Michaud N. R., Therrien M., Cacace A., Edsall L. C., Spiegel S., Rubin G. M., Morrison D. K. KSR stimulates Raf-1 activity in a kinase-independent manner. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12792–12796. doi: 10.1073/pnas.94.24.12792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Michel C., van Echten-Deckert G., Rother J., Sandhoff K., Wang E., Merrill A. H., Jr Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J Biol Chem. 1997 Sep 5;272(36):22432–22437. doi: 10.1074/jbc.272.36.22432. [DOI] [PubMed] [Google Scholar]
  190. Mitoma J., Ito M., Furuya S., Hirabayashi Y. Bipotential roles of ceramide in the growth of hippocampal neurons: promotion of cell survival and dendritic outgrowth in dose- and developmental stage-dependent manners. J Neurosci Res. 1998 Mar 15;51(6):712–722. doi: 10.1002/(SICI)1097-4547(19980315)51:6<712::AID-JNR5>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  191. Mizushima N., Koike R., Kohsaka H., Kushi Y., Handa S., Yagita H., Miyasaka N. Ceramide induces apoptosis via CPP32 activation. FEBS Lett. 1996 Oct 21;395(2-3):267–271. doi: 10.1016/0014-5793(96)01050-2. [DOI] [PubMed] [Google Scholar]
  192. Modur V., Zimmerman G. A., Prescott S. M., McIntyre T. M. Endothelial cell inflammatory responses to tumor necrosis factor alpha. Ceramide-dependent and -independent mitogen-activated protein kinase cascades. J Biol Chem. 1996 May 31;271(22):13094–13102. doi: 10.1074/jbc.271.22.13094. [DOI] [PubMed] [Google Scholar]
  193. Mori K., Stone S., Braverman L. E., DeVito W. J. Effects of ceramide and protein kinase C on the regulation of type I 5'-deiodinase in FRTL-5 rat thyroid cells. Endocrinology. 1996 Nov;137(11):4994–4999. doi: 10.1210/endo.137.11.8895373. [DOI] [PubMed] [Google Scholar]
  194. Murohara T., Kugiyama K., Ohgushi M., Sugiyama S., Ohta Y., Yasue H. Effects of sphingomyelinase and sphingosine on arterial vasomotor regulation. J Lipid Res. 1996 Jul;37(7):1601–1608. [PubMed] [Google Scholar]
  195. Müller G., Ayoub M., Storz P., Rennecke J., Fabbro D., Pfizenmaier K. PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 1995 May 1;14(9):1961–1969. doi: 10.1002/j.1460-2075.1995.tb07188.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Müller G., Storz P., Bourteele S., Döppler H., Pfizenmaier K., Mischak H., Philipp A., Kaiser C., Kolch W. Regulation of Raf-1 kinase by TNF via its second messenger ceramide and cross-talk with mitogenic signalling. EMBO J. 1998 Feb 2;17(3):732–742. doi: 10.1093/emboj/17.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Nagiec M. M., Nagiec E. E., Baltisberger J. A., Wells G. B., Lester R. L., Dickson R. C. Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem. 1997 Apr 11;272(15):9809–9817. doi: 10.1074/jbc.272.15.9809. [DOI] [PubMed] [Google Scholar]
  198. Nakamura T., Abe A., Balazovich K. J., Wu D., Suchard S. J., Boxer L. A., Shayman J. A. Ceramide regulates oxidant release in adherent human neutrophils. J Biol Chem. 1994 Jul 15;269(28):18384–18389. [PubMed] [Google Scholar]
  199. Nickels J. T., Broach J. R. A ceramide-activated protein phosphatase mediates ceramide-induced G1 arrest of Saccharomyces cerevisiae. Genes Dev. 1996 Feb 15;10(4):382–394. doi: 10.1101/gad.10.4.382. [DOI] [PubMed] [Google Scholar]
  200. Nievelstein P. F., Fogelman A. M., Mottino G., Frank J. S. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscler Thromb. 1991 Nov-Dec;11(6):1795–1805. doi: 10.1161/01.atv.11.6.1795. [DOI] [PubMed] [Google Scholar]
  201. Nikolova-Karakashian M. N., Russell R. W., Booth R. A., Jenden D. J., Merrill A. H., Jr Sphingomyelin metabolism in rat liver after chronic dietary replacement of choline by N-aminodeanol. J Lipid Res. 1997 Sep;38(9):1764–1770. [PubMed] [Google Scholar]
  202. Nyberg L., Duan R. D., Axelson J., Nilsson A. Identification of an alkaline sphingomyelinase activity in human bile. Biochim Biophys Acta. 1996 Mar 29;1300(1):42–48. doi: 10.1016/0005-2760(95)00245-6. [DOI] [PubMed] [Google Scholar]
  203. Okazaki T., Bell R. M., Hannun Y. A. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem. 1989 Nov 15;264(32):19076–19080. [PubMed] [Google Scholar]
  204. Okazaki T., Bielawska A., Domae N., Bell R. M., Hannun Y. A. Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem. 1994 Feb 11;269(6):4070–4077. [PubMed] [Google Scholar]
  205. Oral H., Dorn G. W., 2nd, Mann D. L. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte. J Biol Chem. 1997 Feb 21;272(8):4836–4842. doi: 10.1074/jbc.272.8.4836. [DOI] [PubMed] [Google Scholar]
  206. Otterbach B., Stoffel W. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell. 1995 Jun 30;81(7):1053–1061. doi: 10.1016/s0092-8674(05)80010-8. [DOI] [PubMed] [Google Scholar]
  207. Pahan K., Sheikh F. G., Khan M., Namboodiri A. M., Singh I. Sphingomyelinase and ceramide stimulate the expression of inducible nitric-oxide synthase in rat primary astrocytes. J Biol Chem. 1998 Jan 30;273(5):2591–2600. doi: 10.1074/jbc.273.5.2591. [DOI] [PubMed] [Google Scholar]
  208. Papp B., Zhang D., Groopman J. E., Byrn R. A. Stimulation of human immunodeficiency virus type 1 expression by ceramide. AIDS Res Hum Retroviruses. 1994 Jul;10(7):775–780. doi: 10.1089/aid.1994.10.775. [DOI] [PubMed] [Google Scholar]
  209. Pastorino J. G., Simbula G., Yamamoto K., Glascott P. A., Jr, Rothman R. J., Farber J. L. The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem. 1996 Nov 22;271(47):29792–29798. doi: 10.1074/jbc.271.47.29792. [DOI] [PubMed] [Google Scholar]
  210. Paumen M. B., Ishida Y., Han H., Muramatsu M., Eguchi Y., Tsujimoto Y., Honjo T. Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2. Biochem Biophys Res Commun. 1997 Feb 24;231(3):523–525. doi: 10.1006/bbrc.1997.6089. [DOI] [PubMed] [Google Scholar]
  211. Paumen M. B., Ishida Y., Muramatsu M., Yamamoto M., Honjo T. Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem. 1997 Feb 7;272(6):3324–3329. doi: 10.1074/jbc.272.6.3324. [DOI] [PubMed] [Google Scholar]
  212. Peraldi P., Hotamisligil G. S., Buurman W. A., White M. F., Spiegelman B. M. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J Biol Chem. 1996 May 31;271(22):13018–13022. doi: 10.1074/jbc.271.22.13018. [DOI] [PubMed] [Google Scholar]
  213. Peña L. A., Fuks Z., Kolesnick R. Stress-induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol. 1997 Mar 7;53(5):615–621. doi: 10.1016/s0006-2952(96)00834-9. [DOI] [PubMed] [Google Scholar]
  214. Pronk G. J., Ramer K., Amiri P., Williams L. T. Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by REAPER. Science. 1996 Feb 9;271(5250):808–810. doi: 10.1126/science.271.5250.808. [DOI] [PubMed] [Google Scholar]
  215. Qian N. X., Russell M., Buhl A. M., Johnson G. L. Expression of GTPase-deficient G alpha 16 inhibits Swiss 3T3 cell growth. J Biol Chem. 1994 Jul 1;269(26):17417–17423. [PubMed] [Google Scholar]
  216. Quintans J., Kilkus J., McShan C. L., Gottschalk A. R., Dawson G. Ceramide mediates the apoptotic response of WEHI 231 cells to anti-immunoglobulin, corticosteroids and irradiation. Biochem Biophys Res Commun. 1994 Jul 29;202(2):710–714. doi: 10.1006/bbrc.1994.1988. [DOI] [PubMed] [Google Scholar]
  217. Radford I. R. Effect of radiomodifying agents on the ratios of X-ray-induced lesions in cellular DNA: use in lethal lesion determination. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Apr;49(4):621–637. doi: 10.1080/09553008514552871. [DOI] [PubMed] [Google Scholar]
  218. Raine C. S. The Norton Lecture: a review of the oligodendrocyte in the multiple sclerosis lesion. J Neuroimmunol. 1997 Aug;77(2):135–152. doi: 10.1016/s0165-5728(97)00073-8. [DOI] [PubMed] [Google Scholar]
  219. Raines M. A., Kolesnick R. N., Golde D. W. Sphingomyelinase and ceramide activate mitogen-activated protein kinase in myeloid HL-60 cells. J Biol Chem. 1993 Jul 15;268(20):14572–14575. [PubMed] [Google Scholar]
  220. Redondo C., Flores I., Gonzalez A., Nagata S., Carrera A. C., Merida I., Martinez-A C. Linomide prevents the lethal effect of anti-Fas antibody and reduces Fas-mediated ceramide production in mouse hepatocytes. J Clin Invest. 1996 Sep 1;98(5):1245–1252. doi: 10.1172/JCI118908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Reyes J. G., Robayna I. G., Delgado P. S., González I. H., Aguiar J. Q., Rosas F. E., Fanjul L. F., Galarreta C. M. c-Jun is a downstream target for ceramide-activated protein phosphatase in A431 cells. J Biol Chem. 1996 Aug 30;271(35):21375–21380. doi: 10.1074/jbc.271.35.21375. [DOI] [PubMed] [Google Scholar]
  222. Richard A., Robichaud G., Lapointe R., Bourgoin S., Darveau A., Poulin L. Interference of HIV-1 Nef in the sphingomyelin transduction pathway activated by tumour necrosis factor-alpha in human glial cells. AIDS. 1997 Jan;11(1):F1–F7. doi: 10.1097/00002030-199701000-00001. [DOI] [PubMed] [Google Scholar]
  223. Rivas C. I., Golde D. W., Vera J. C., Kolesnick R. N. Involvement of the sphingomyelin pathway in autocrine tumor necrosis factor signaling for human immunodeficiency virus production in chronically infected HL-60 cells. Blood. 1994 Apr 15;83(8):2191–2197. [PubMed] [Google Scholar]
  224. Sallusto F., Nicolò C., De Maria R., Corinti S., Testi R. Ceramide inhibits antigen uptake and presentation by dendritic cells. J Exp Med. 1996 Dec 1;184(6):2411–2416. doi: 10.1084/jem.184.6.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Salvesen G. S., Dixit V. M. Caspases: intracellular signaling by proteolysis. Cell. 1997 Nov 14;91(4):443–446. doi: 10.1016/s0092-8674(00)80430-4. [DOI] [PubMed] [Google Scholar]
  226. Sandler S., Andersson A., Hellerström C. Inhibitory effects of interleukin 1 on insulin secretion, insulin biosynthesis, and oxidative metabolism of isolated rat pancreatic islets. Endocrinology. 1987 Oct;121(4):1424–1431. doi: 10.1210/endo-121-4-1424. [DOI] [PubMed] [Google Scholar]
  227. Santana P., Llanes L., Hernandez I., Gallardo G., Quintana J., Gonzalez J., Estevez F., Ruiz de Galarreta C., Fanjul L. F. Ceramide mediates tumor necrosis factor effects on P450-aromatase activity in cultured granulosa cells. Endocrinology. 1995 May;136(5):2345–2348. doi: 10.1210/endo.136.5.7720683. [DOI] [PubMed] [Google Scholar]
  228. Santana P., Llanes L., Hernandez I., Gonzalez-Robayna I., Tabraue C., Gonzalez-Reyes J., Quintana J., Estevez F., Ruiz de Galarreta C. M., Fanjul L. F. Interleukin-1 beta stimulates sphingomyelin hydrolysis in cultured granulosa cells: evidence for a regulatory role of ceramide on progesterone and prostaglandin biosynthesis. Endocrinology. 1996 Jun;137(6):2480–2489. doi: 10.1210/endo.137.6.8641202. [DOI] [PubMed] [Google Scholar]
  229. Santana P., Peña L. A., Haimovitz-Friedman A., Martin S., Green D., McLoughlin M., Cordon-Cardo C., Schuchman E. H., Fuks Z., Kolesnick R. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell. 1996 Jul 26;86(2):189–199. doi: 10.1016/s0092-8674(00)80091-4. [DOI] [PubMed] [Google Scholar]
  230. Schissel S. L., Schuchman E. H., Williams K. J., Tabas I. Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem. 1996 Aug 2;271(31):18431–18436. doi: 10.1074/jbc.271.31.18431. [DOI] [PubMed] [Google Scholar]
  231. Schissel S. L., Tweedie-Hardman J., Rapp J. H., Graham G., Williams K. J., Tabas I. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest. 1996 Sep 15;98(6):1455–1464. doi: 10.1172/JCI118934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Schneider P. B., Kennedy E. P. Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease. J Lipid Res. 1967 May;8(3):202–209. [PubMed] [Google Scholar]
  233. Schuchman E. H., Levran O., Pereira L. V., Desnick R. J. Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics. 1992 Feb;12(2):197–205. doi: 10.1016/0888-7543(92)90366-z. [DOI] [PubMed] [Google Scholar]
  234. Schuchman E. H., Suchi M., Takahashi T., Sandhoff K., Desnick R. J. Human acid sphingomyelinase. Isolation, nucleotide sequence and expression of the full-length and alternatively spliced cDNAs. J Biol Chem. 1991 May 5;266(13):8531–8539. [PubMed] [Google Scholar]
  235. Schwandner R., Wiegmann K., Bernardo K., Kreder D., Kronke M. TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J Biol Chem. 1998 Mar 6;273(10):5916–5922. doi: 10.1074/jbc.273.10.5916. [DOI] [PubMed] [Google Scholar]
  236. Schwarz A., Futerman A. H. Distinct roles for ceramide and glucosylceramide at different stages of neuronal growth. J Neurosci. 1997 May 1;17(9):2929–2938. doi: 10.1523/JNEUROSCI.17-09-02929.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Shimabukuro M., Zhou Y. T., Levi M., Unger R. H. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2498–2502. doi: 10.1073/pnas.95.5.2498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Shirakabe K., Yamaguchi K., Shibuya H., Irie K., Matsuda S., Moriguchi T., Gotoh Y., Matsumoto K., Nishida E. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem. 1997 Mar 28;272(13):8141–8144. doi: 10.1074/jbc.272.13.8141. [DOI] [PubMed] [Google Scholar]
  239. Sjöholm A. Ceramide inhibits pancreatic beta-cell insulin production and mitogenesis and mimics the actions of interleukin-1 beta. FEBS Lett. 1995 Jul 3;367(3):283–286. doi: 10.1016/0014-5793(95)00470-t. [DOI] [PubMed] [Google Scholar]
  240. Smyth M. J., Perry D. K., Zhang J., Poirier G. G., Hannun Y. A., Obeid L. M. prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem J. 1996 May 15;316(Pt 1):25–28. doi: 10.1042/bj3160025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Soeda S., Honda O., Shimeno H., Nagamatsu A. Sphingomyelinase and cell-permeable ceramide analogs increase the release of plasminogen activator inhibitor-1 from cultured endothelial cells. Thromb Res. 1995 Dec 15;80(6):509–518. doi: 10.1016/0049-3848(95)00206-5. [DOI] [PubMed] [Google Scholar]
  242. Soliven B., Szuchet S. Signal transduction pathways in oligodendrocytes: role of tumor necrosis factor-alpha. Int J Dev Neurosci. 1995 Jun-Jul;13(3-4):351–367. doi: 10.1016/0736-5748(95)00019-d. [DOI] [PubMed] [Google Scholar]
  243. Soliven B., Takeda M., Szuchet S. Depolarizing agents and tumor necrosis factor-alpha modulate protein phosphorylation in oligodendrocytes. J Neurosci Res. 1994 May 1;38(1):91–100. doi: 10.1002/jnr.490380112. [DOI] [PubMed] [Google Scholar]
  244. Spence M. W., Byers D. M., Palmer F. B., Cook H. W. A new Zn2+-stimulated sphingomyelinase in fetal bovine serum. J Biol Chem. 1989 Apr 5;264(10):5358–5363. [PubMed] [Google Scholar]
  245. Spence M. W., Wakkary J., Clarke J. T., Cook H. W. Localization of neutral magnesium-stimulated sphingomyelinase in plasma membrane of cultured neuroblastoma cells. Biochim Biophys Acta. 1982 Oct 28;719(1):162–164. doi: 10.1016/0304-4165(82)90321-x. [DOI] [PubMed] [Google Scholar]
  246. Spiegel S., Foster D., Kolesnick R. Signal transduction through lipid second messengers. Curr Opin Cell Biol. 1996 Apr;8(2):159–167. doi: 10.1016/s0955-0674(96)80061-5. [DOI] [PubMed] [Google Scholar]
  247. Spiegel S., Merrill A. H., Jr Sphingolipid metabolism and cell growth regulation. FASEB J. 1996 Oct;10(12):1388–1397. doi: 10.1096/fasebj.10.12.8903509. [DOI] [PubMed] [Google Scholar]
  248. Srinivasan A., Foster L. M., Testa M. P., Ord T., Keane R. W., Bredesen D. E., Kayalar C. Bcl-2 expression in neural cells blocks activation of ICE/CED-3 family proteases during apoptosis. J Neurosci. 1996 Sep 15;16(18):5654–5660. doi: 10.1523/JNEUROSCI.16-18-05654.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Stanger B. Z., Leder P., Lee T. H., Kim E., Seed B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell. 1995 May 19;81(4):513–523. doi: 10.1016/0092-8674(95)90072-1. [DOI] [PubMed] [Google Scholar]
  250. Suchard S. J., Mansfield P. J., Boxer L. A., Shayman J. A. Mitogen-activated protein kinase activation during IgG-dependent phagocytosis in human neutrophils: inhibition by ceramide. J Immunol. 1997 May 15;158(10):4961–4967. [PubMed] [Google Scholar]
  251. Sundaram M., Han M. The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell. 1995 Dec 15;83(6):889–901. doi: 10.1016/0092-8674(95)90205-8. [DOI] [PubMed] [Google Scholar]
  252. Susin S. A., Zamzami N., Castedo M., Hirsch T., Marchetti P., Macho A., Daugas E., Geuskens M., Kroemer G. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med. 1996 Oct 1;184(4):1331–1341. doi: 10.1084/jem.184.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Susin S. A., Zamzami N., Larochette N., Dallaporta B., Marzo I., Brenner C., Hirsch T., Petit P. X., Geuskens M., Kroemer G. A cytofluorometric assay of nuclear apoptosis induced in a cell-free system: application to ceramide-induced apoptosis. Exp Cell Res. 1997 Nov 1;236(2):397–403. doi: 10.1006/excr.1997.3733. [DOI] [PubMed] [Google Scholar]
  254. Suzuki A., Iwasaki M., Kato M., Wagai N. Sequential operation of ceramide synthesis and ICE cascade in CPT-11-initiated apoptotic death signaling. Exp Cell Res. 1997 May 25;233(1):41–47. doi: 10.1006/excr.1997.3498. [DOI] [PubMed] [Google Scholar]
  255. Tabas I., Li Y., Brocia R. W., Xu S. W., Swenson T. L., Williams K. J. Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation. J Biol Chem. 1993 Sep 25;268(27):20419–20432. [PubMed] [Google Scholar]
  256. Tamura H., Noto M., Kinoshita K., Ohkuma S., Ikezawa H. Inhibition of NGF-induced neurite outgrowth of PC12 cells by Bacillus cereus sphingomyelinase, a bacterial hemolysin. Toxicon. 1994 May;32(5):629–633. doi: 10.1016/0041-0101(94)90211-9. [DOI] [PubMed] [Google Scholar]
  257. Tepper A. D., Cock J. G., de Vries E., Borst J., van Blitterswijk W. J. CD95/Fas-induced ceramide formation proceeds with slow kinetics and is not blocked by caspase-3/CPP32 inhibition. J Biol Chem. 1997 Sep 26;272(39):24308–24312. doi: 10.1074/jbc.272.39.24308. [DOI] [PubMed] [Google Scholar]
  258. Tepper C. G., Jayadev S., Liu B., Bielawska A., Wolff R., Yonehara S., Hannun Y. A., Seldin M. F. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8443–8447. doi: 10.1073/pnas.92.18.8443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Therrien M., Chang H. C., Solomon N. M., Karim F. D., Wassarman D. A., Rubin G. M. KSR, a novel protein kinase required for RAS signal transduction. Cell. 1995 Dec 15;83(6):879–888. doi: 10.1016/0092-8674(95)90204-x. [DOI] [PubMed] [Google Scholar]
  260. Therrien M., Michaud N. R., Rubin G. M., Morrison D. K. KSR modulates signal propagation within the MAPK cascade. Genes Dev. 1996 Nov 1;10(21):2684–2695. doi: 10.1101/gad.10.21.2684. [DOI] [PubMed] [Google Scholar]
  261. Tomiuk S., Hofmann K., Nix M., Zumbansen M., Stoffel W. Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3638–3643. doi: 10.1073/pnas.95.7.3638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Tsushima H., Urata Y., Miyazaki Y., Fuchigami K., Kuriyama K., Kondo T., Tomonaga M. Human erythropoietin receptor increases GATA-2 and Bcl-xL by a protein kinase C-dependent pathway in human erythropoietin-dependent cell line AS-E2. Cell Growth Differ. 1997 Dec;8(12):1317–1328. [PubMed] [Google Scholar]
  263. Uckun F. M., Schieven G. L., Tuel-Ahlgren L. M., Dibirdik I., Myers D. E., Ledbetter J. A., Song C. W. Tyrosine phosphorylation is a mandatory proximal step in radiation-induced activation of the protein kinase C signaling pathway in human B-lymphocyte precursors. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):252–256. doi: 10.1073/pnas.90.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Ulrich E., Duwel A., Kauffmann-Zeh A., Gilbert C., Lyon D., Rudkin B., Evan G., Martin-Zanca D. Specific TrkA survival signals interfere with different apoptotic pathways. Oncogene. 1998 Feb 19;16(7):825–832. doi: 10.1038/sj.onc.1201842. [DOI] [PubMed] [Google Scholar]
  265. Van Veldhoven P. P., Bishop W. R., Bell R. M. Enzymatic quantification of sphingosine in the picomole range in cultured cells. Anal Biochem. 1989 Nov 15;183(1):177–189. doi: 10.1016/0003-2697(89)90186-3. [DOI] [PubMed] [Google Scholar]
  266. Van Veldhoven P. P., Matthews T. J., Bolognesi D. P., Bell R. M. Changes in bioactive lipids, alkylacylglycerol and ceramide, occur in HIV-infected cells. Biochem Biophys Res Commun. 1992 Aug 31;187(1):209–216. doi: 10.1016/s0006-291x(05)81480-9. [DOI] [PubMed] [Google Scholar]
  267. Verheij M., Bose R., Lin X. H., Yao B., Jarvis W. D., Grant S., Birrer M. J., Szabo E., Zon L. I., Kyriakis J. M. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996 Mar 7;380(6569):75–79. doi: 10.1038/380075a0. [DOI] [PubMed] [Google Scholar]
  268. Vidair C. A., Chen C. H., Ling C. C., Dewey W. C. Apoptosis induced by X-irradiation of rec-myc cells is postmitotic and not predicted by the time after irradiation or behavior of sister cells. Cancer Res. 1996 Sep 15;56(18):4116–4118. [PubMed] [Google Scholar]
  269. Visnjić D., Batinić D., Banfić H. Arachidonic acid mediates interferon-gamma-induced sphingomyelin hydrolysis and monocytic marker expression in HL-60 cell line. Blood. 1997 Jan 1;89(1):81–91. [PubMed] [Google Scholar]
  270. Ward J. F. The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol. 1994 Nov;66(5):427–432. doi: 10.1080/09553009414551401. [DOI] [PubMed] [Google Scholar]
  271. Waterhouse N., Kumar S., Song Q., Strike P., Sparrow L., Dreyfuss G., Alnemri E. S., Litwack G., Lavin M., Watters D. Heteronuclear ribonucleoproteins C1 and C2, components of the spliceosome, are specific targets of interleukin 1beta-converting enzyme-like proteases in apoptosis. J Biol Chem. 1996 Nov 15;271(46):29335–29341. doi: 10.1074/jbc.271.46.29335. [DOI] [PubMed] [Google Scholar]
  272. Watts J. D., Gu M., Polverino A. J., Patterson S. D., Aebersold R. Fas-induced apoptosis of T cells occurs independently of ceramide generation. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7292–7296. doi: 10.1073/pnas.94.14.7292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Welsh N. Interleukin-1 beta-induced ceramide and diacylglycerol generation may lead to activation of the c-Jun NH2-terminal kinase and the transcription factor ATF2 in the insulin-producing cell line RINm5F. J Biol Chem. 1996 Apr 5;271(14):8307–8312. doi: 10.1074/jbc.271.14.8307. [DOI] [PubMed] [Google Scholar]
  274. Westwick J. K., Bielawska A. E., Dbaibo G., Hannun Y. A., Brenner D. A. Ceramide activates the stress-activated protein kinases. J Biol Chem. 1995 Sep 29;270(39):22689–22692. doi: 10.1074/jbc.270.39.22689. [DOI] [PubMed] [Google Scholar]
  275. Whitman S. P., Civoli F., Daniel L. W. Protein kinase CbetaII activation by 1-beta-D-arabinofuranosylcytosine is antagonistic to stimulation of apoptosis and Bcl-2alpha down-regulation. J Biol Chem. 1997 Sep 19;272(38):23481–23484. doi: 10.1074/jbc.272.38.23481. [DOI] [PubMed] [Google Scholar]
  276. Wieder T., Geilen C. C., Kolter T., Sadeghlar F., Sandhoff K., Brossmer R., Ihrig P., Perry D., Orfanos C. E., Hannun Y. A. Bcl-2 antagonizes apoptotic cell death induced by two new ceramide analogues. FEBS Lett. 1997 Jul 14;411(2-3):260–264. doi: 10.1016/s0014-5793(97)00717-5. [DOI] [PubMed] [Google Scholar]
  277. Wiegmann K., Schütze S., Machleidt T., Witte D., Krönke M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell. 1994 Sep 23;78(6):1005–1015. doi: 10.1016/0092-8674(94)90275-5. [DOI] [PubMed] [Google Scholar]
  278. Wiesner D. A., Dawson G. Programmed cell death in neurotumour cells involves the generation of ceramide. Glycoconj J. 1996 Apr;13(2):327–333. doi: 10.1007/BF00731508. [DOI] [PubMed] [Google Scholar]
  279. Wiesner D. A., Dawson G. Staurosporine induces programmed cell death in embryonic neurons and activation of the ceramide pathway. J Neurochem. 1996 Apr;66(4):1418–1425. doi: 10.1046/j.1471-4159.1996.66041418.x. [DOI] [PubMed] [Google Scholar]
  280. Wilt S. G., Milward E., Zhou J. M., Nagasato K., Patton H., Rusten R., Griffin D. E., O'Connor M., Dubois-Dalcq M. In vitro evidence for a dual role of tumor necrosis factor-alpha in human immunodeficiency virus type 1 encephalopathy. Ann Neurol. 1995 Mar;37(3):381–394. doi: 10.1002/ana.410370315. [DOI] [PubMed] [Google Scholar]
  281. Witty J. P., Bridgham J. T., Johnson A. L. Induction of apoptotic cell death in hen granulosa cells by ceramide. Endocrinology. 1996 Dec;137(12):5269–5277. doi: 10.1210/endo.137.12.8940345. [DOI] [PubMed] [Google Scholar]
  282. Wolff R. A., Dobrowsky R. T., Bielawska A., Obeid L. M., Hannun Y. A. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem. 1994 Jul 29;269(30):19605–19609. [PubMed] [Google Scholar]
  283. Wong K., Li X. B., Hunchuk N. N-acetylsphingosine (C2-ceramide) inhibited neutrophil superoxide formation and calcium influx. J Biol Chem. 1995 Feb 17;270(7):3056–3062. doi: 10.1074/jbc.270.7.3056. [DOI] [PubMed] [Google Scholar]
  284. Wooten M. W., Zhou G., Seibenhener M. L., Coleman E. S. A role for zeta protein kinase C in nerve growth factor-induced differentiation of PC12 cells. Cell Growth Differ. 1994 Apr;5(4):395–403. [PubMed] [Google Scholar]
  285. Wyllie A. H. Apoptosis: an overview. Br Med Bull. 1997;53(3):451–465. doi: 10.1093/oxfordjournals.bmb.a011623. [DOI] [PubMed] [Google Scholar]
  286. Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995 Nov 24;270(5240):1326–1331. doi: 10.1126/science.270.5240.1326. [DOI] [PubMed] [Google Scholar]
  287. Xie H., Johnson G. V. Ceramide selectively decreases tau levels in differentiated PC12 cells through modulation of calpain I. J Neurochem. 1997 Sep;69(3):1020–1030. doi: 10.1046/j.1471-4159.1997.69031020.x. [DOI] [PubMed] [Google Scholar]
  288. Xing H., Kornfeld K., Muslin A. J. The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr Biol. 1997 May 1;7(5):294–300. doi: 10.1016/s0960-9822(06)00152-7. [DOI] [PubMed] [Google Scholar]
  289. Yao B., Zhang Y., Delikat S., Mathias S., Basu S., Kolesnick R. Phosphorylation of Raf by ceramide-activated protein kinase. Nature. 1995 Nov 16;378(6554):307–310. doi: 10.1038/378307a0. [DOI] [PubMed] [Google Scholar]
  290. Yoon S. O., Casaccia-Bonnefil P., Carter B., Chao M. V. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J Neurosci. 1998 May 1;18(9):3273–3281. doi: 10.1523/JNEUROSCI.18-09-03273.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  291. Yu W., Fantl W. J., Harrowe G., Williams L. T. Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol. 1998 Jan 1;8(1):56–64. doi: 10.1016/s0960-9822(98)70020-x. [DOI] [PubMed] [Google Scholar]
  292. Zager R. A., Iwata M., Conrad D. S., Burkhart K. M., Igarashi Y. Altered ceramide and sphingosine expression during the induction phase of ischemic acute renal failure. Kidney Int. 1997 Jul;52(1):60–70. doi: 10.1038/ki.1997.304. [DOI] [PubMed] [Google Scholar]
  293. Zamzami N., Marchetti P., Castedo M., Decaudin D., Macho A., Hirsch T., Susin S. A., Petit P. X., Mignotte B., Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367–377. doi: 10.1084/jem.182.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Zhang J., Alter N., Reed J. C., Borner C., Obeid L. M., Hannun Y. A. Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5325–5328. doi: 10.1073/pnas.93.11.5325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Zhang P., Liu B., Kang S. W., Seo M. S., Rhee S. G., Obeid L. M. Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem. 1997 Dec 5;272(49):30615–30618. doi: 10.1074/jbc.272.49.30615. [DOI] [PubMed] [Google Scholar]
  296. Zhang P., Miller B. S., Rosenzweig S. A., Bhat N. R. Activation of C-jun N-terminal kinase/stress-activated protein kinase in primary glial cultures. J Neurosci Res. 1996 Oct 1;46(1):114–121. doi: 10.1002/(SICI)1097-4547(19961001)46:1<114::AID-JNR14>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  297. Zhang P., Miller B. S., Rosenzweig S. A., Bhat N. R. Activation of C-jun N-terminal kinase/stress-activated protein kinase in primary glial cultures. J Neurosci Res. 1996 Oct 1;46(1):114–121. doi: 10.1002/(SICI)1097-4547(19961001)46:1<114::AID-JNR14>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  298. Zhang Y., Yao B., Delikat S., Bayoumy S., Lin X. H., Basu S., McGinley M., Chan-Hui P. Y., Lichenstein H., Kolesnick R. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell. 1997 Apr 4;89(1):63–72. doi: 10.1016/s0092-8674(00)80183-x. [DOI] [PubMed] [Google Scholar]
  299. Zumbansen M., Stoffel W. Tumor necrosis factor alpha activates NF-kappaB in acid sphingomyelinase-deficient mouse embryonic fibroblasts. J Biol Chem. 1997 Apr 18;272(16):10904–10909. doi: 10.1074/jbc.272.16.10904. [DOI] [PubMed] [Google Scholar]
  300. Zundel W., Giaccia A. Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes Dev. 1998 Jul 1;12(13):1941–1946. doi: 10.1101/gad.12.13.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES