Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 1;336(Pt 2):367–371. doi: 10.1042/bj3360367

C-terminal tripeptide Ser-Asn-Leu (SNL) of human D-aspartate oxidase is a functional peroxisome-targeting signal.

L Amery 1, C Brees 1, M Baes 1, C Setoyama 1, R Miura 1, G P Mannaerts 1, P P Van Veldhoven 1
PMCID: PMC1219880  PMID: 9820813

Abstract

The functionality of the C-terminus (Ser-Asn-Leu; SNL) of human d-aspartate oxidase, an enzyme proposed to have a role in the inactivation of synaptically released d-aspartate, as a peroxisome-targeting signal (PTS1) was investigated in vivo and in vitro. Bacterially expressed human d-aspartate oxidase was shown to interact with the human PTS1-binding protein, peroxin protein 5 (PEX5p). Binding was gradually abolished by carboxypeptidase treatment of the oxidase and competitively inhibited by a Ser-Lys-Leu (SKL)-containing peptide. After transfection of mouse fibroblasts with a plasmid encoding green fluorescent protein (GFP) extended by PKSNL (the C-terminal pentapeptide of the oxidase), a punctate fluorescent pattern was evident. The modified GFP co-localized with peroxisomal thiolase as shown by indirect immunofluorescence. On transfection in fibroblasts lacking PEX5p receptor, GFP-PKSNL staining was cytosolic. Peroxisomal import of GFP extended by PGSNL (replacement of the positively charged fourth-last amino acid by glycine) seemed to be slower than that of GFP-PKSNL, whereas extension by PKSNG abolished the import of the modified GFP. Taken together, these results indicate that SNL, a tripeptide not fitting the PTS1 consensus currently defined in mammalian systems, acts as a functional PTS1 in mammalian systems, and that the consensus sequence, based on this work and that of other groups, has to be broadened to (S/A/C/K/N)-(K/R/H/Q/N/S)-L.

Full Text

The Full Text of this article is available as a PDF (193.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonenkov V. D., Van Veldhoven P. P., Waelkens E., Mannaerts G. P. Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates. J Biol Chem. 1997 Oct 10;272(41):26023–26031. doi: 10.1074/jbc.272.41.26023. [DOI] [PubMed] [Google Scholar]
  2. Baes M., Gressens P., Baumgart E., Carmeliet P., Casteels M., Fransen M., Evrard P., Fahimi D., Declercq P. E., Collen D. A mouse model for Zellweger syndrome. Nat Genet. 1997 Sep;17(1):49–57. doi: 10.1038/ng0997-49. [DOI] [PubMed] [Google Scholar]
  3. Baumgart E., Vanhooren J. C., Fransen M., Marynen P., Puype M., Vandekerckhove J., Leunissen J. A., Fahimi H. D., Mannaerts G. P., van Veldhoven P. P. Molecular characterization of the human peroxisomal branched-chain acyl-CoA oxidase: cDNA cloning, chromosomal assignment, tissue distribution, and evidence for the absence of the protein in Zellweger syndrome. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13748–13753. doi: 10.1073/pnas.93.24.13748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baumgart E., Vanhooren J. C., Fransen M., Van Leuven F., Fahimi H. D., Van Veldhoven P. P., Mannaerts G. P. Molecular cloning and further characterization of rat peroxisomal trihydroxycoprostanoyl-CoA oxidase. Biochem J. 1996 Nov 15;320(Pt 1):115–121. doi: 10.1042/bj3200115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brocard C., Kragler F., Simon M. M., Schuster T., Hartig A. The tetratricopeptide repeat-domain of the PAS10 protein of Saccharomyces cerevisiae is essential for binding the peroxisomal targeting signal-SKL. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1016–1022. doi: 10.1006/bbrc.1994.2564. [DOI] [PubMed] [Google Scholar]
  6. D'Aniello A., Di Cosmo A., Di Cristo C., Annunziato L., Petrucelli L., Fisher G. Involvement of D-aspartic acid in the synthesis of testosterone in rat testes. Life Sci. 1996;59(2):97–104. doi: 10.1016/0024-3205(96)00266-4. [DOI] [PubMed] [Google Scholar]
  7. Danpure C. J. Primary hyperoxaluria type 1 and peroxisome-to-mitochondrion mistargeting of alanine:glyoxylate aminotransferase. Biochimie. 1993;75(3-4):309–315. doi: 10.1016/0300-9084(93)90091-6. [DOI] [PubMed] [Google Scholar]
  8. Distel B., Erdmann R., Gould S. J., Blobel G., Crane D. I., Cregg J. M., Dodt G., Fujiki Y., Goodman J. M., Just W. W. A unified nomenclature for peroxisome biogenesis factors. J Cell Biol. 1996 Oct;135(1):1–3. doi: 10.1083/jcb.135.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunlop D. S., Neidle A., McHale D., Dunlop D. M., Lajtha A. The presence of free D-aspartic acid in rodents and man. Biochem Biophys Res Commun. 1986 Nov 26;141(1):27–32. doi: 10.1016/s0006-291x(86)80329-1. [DOI] [PubMed] [Google Scholar]
  10. Ericsson J., Appelkvist E. L., Runquist M., Dallner G. Biosynthesis of dolichol and cholesterol in rat liver peroxisomes. Biochimie. 1993;75(3-4):167–173. doi: 10.1016/0300-9084(93)90074-3. [DOI] [PubMed] [Google Scholar]
  11. Fransen M., Brees C., Baumgart E., Vanhooren J. C., Baes M., Mannaerts G. P., Van Veldhoven P. P. Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J Biol Chem. 1995 Mar 31;270(13):7731–7736. doi: 10.1074/jbc.270.13.7731. [DOI] [PubMed] [Google Scholar]
  12. Fransen M., Brees C., Van Veldhoven P. P., Mannaerts G. P. The visualization of peroxisomal proteins containing a C-terminal targeting sequence on western blot by using the biotinylated PTS1-receptor. Anal Biochem. 1996 Nov 1;242(1):26–30. doi: 10.1006/abio.1996.0423. [DOI] [PubMed] [Google Scholar]
  13. Gould S. G., Keller G. A., Subramani S. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol. 1987 Dec;105(6 Pt 2):2923–2931. doi: 10.1083/jcb.105.6.2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gould S. J., Keller G. A., Hosken N., Wilkinson J., Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989 May;108(5):1657–1664. doi: 10.1083/jcb.108.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gould S. J., Keller G. A., Subramani S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol. 1988 Sep;107(3):897–905. doi: 10.1083/jcb.107.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hashimoto A., Nishikawa T., Konno R., Niwa A., Yasumura Y., Oka T., Takahashi K. Free D-serine, D-aspartate and D-alanine in central nervous system and serum in mutant mice lacking D-amino acid oxidase. Neurosci Lett. 1993 Apr 2;152(1-2):33–36. doi: 10.1016/0304-3940(93)90476-2. [DOI] [PubMed] [Google Scholar]
  17. Hashimoto A., Nishikawa T., Oka T., Hayashi T., Takahashi K. Widespread distribution of free D-aspartate in rat periphery. FEBS Lett. 1993 Sep 27;331(1-2):4–8. doi: 10.1016/0014-5793(93)80286-4. [DOI] [PubMed] [Google Scholar]
  18. Hashimoto A., Nishikawa T., Oka T., Takahashi K. Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J Neurochem. 1993 Feb;60(2):783–786. doi: 10.1111/j.1471-4159.1993.tb03219.x. [DOI] [PubMed] [Google Scholar]
  19. Hashimoto A., Oka T., Nishikawa T. Anatomical distribution and postnatal changes in endogenous free D-aspartate and D-serine in rat brain and periphery. Eur J Neurosci. 1995 Aug 1;7(8):1657–1663. doi: 10.1111/j.1460-9568.1995.tb00687.x. [DOI] [PubMed] [Google Scholar]
  20. Hawkins A. R., Lamb H. K., Smith M., Keyte J. W., Roberts C. F. Molecular organisation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans. Mol Gen Genet. 1988 Oct;214(2):224–231. doi: 10.1007/BF00337715. [DOI] [PubMed] [Google Scholar]
  21. Krisans S. K. Cell compartmentalization of cholesterol biosynthesis. Ann N Y Acad Sci. 1996 Dec 27;804:142–164. doi: 10.1111/j.1749-6632.1996.tb18614.x. [DOI] [PubMed] [Google Scholar]
  22. Motley A., Lumb M. J., Oatey P. B., Jennings P. R., De Zoysa P. A., Wanders R. J., Tabak H. F., Danpure C. J. Mammalian alanine/glyoxylate aminotransferase 1 is imported into peroxisomes via the PTS1 translocation pathway. Increased degeneracy and context specificity of the mammalian PTS1 motif and implications for the peroxisome-to-mitochondrion mistargeting of AGT in primary hyperoxaluria type 1. J Cell Biol. 1995 Oct;131(1):95–109. doi: 10.1083/jcb.131.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mullen R. T., Lee M. S., Flynn C. R., Trelease R. N. Diverse amino acid residues function within the type 1 peroxisomal targeting signal. Implications for the role of accessory residues upstream of the type 1 peroxisomal targeting signal. Plant Physiol. 1997 Nov;115(3):881–889. doi: 10.1104/pp.115.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neidle A., Dunlop D. S. Developmental changes in free D-aspartic acid in the chicken embryo and in the neonatal rat. Life Sci. 1990;46(21):1517–1522. doi: 10.1016/0024-3205(90)90424-p. [DOI] [PubMed] [Google Scholar]
  25. Pedersen J. I., Eggertsen G., Hellman U., Andersson U., Björkhem I. Molecular cloning and expression of cDNA encoding 3alpha,7alpha,12alpha-trihydroxy-5beta-chole stanoyl-CoA oxidase from rabbit liver. J Biol Chem. 1997 Jul 18;272(29):18481–18489. doi: 10.1074/jbc.272.29.18481. [DOI] [PubMed] [Google Scholar]
  26. Purdue P. E., Lazarow P. B. Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J Cell Biol. 1996 Aug;134(4):849–862. doi: 10.1083/jcb.134.4.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rehling P., Albertini M., Kunau W. H. Protein import into peroxisomes: new developments. Ann N Y Acad Sci. 1996 Dec 27;804:34–46. doi: 10.1111/j.1749-6632.1996.tb18606.x. [DOI] [PubMed] [Google Scholar]
  28. Schell M. J., Cooper O. B., Snyder S. H. D-aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2013–2018. doi: 10.1073/pnas.94.5.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Setoyama C., Miura R. Structural and functional characterization of the human brain D-aspartate oxidase. J Biochem. 1997 Apr;121(4):798–803. doi: 10.1093/oxfordjournals.jbchem.a021655. [DOI] [PubMed] [Google Scholar]
  30. Simonic T., Duga S., Negri A., Tedeschi G., Malcovati M., Tenchini M. L., Ronchi S. cDNA cloning and expression of the flavoprotein D-aspartate oxidase from bovine kidney cortex. Biochem J. 1997 Mar 15;322(Pt 3):729–735. doi: 10.1042/bj3220729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sommer J. M., Cheng Q. L., Keller G. A., Wang C. C. In vivo import of firefly luciferase into the glycosomes of Trypanosoma brucei and mutational analysis of the C-terminal targeting signal. Mol Biol Cell. 1992 Jul;3(7):749–759. doi: 10.1091/mbc.3.7.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Van Doren K., Gluzman Y. Efficient transformation of human fibroblasts by adenovirus-simian virus 40 recombinants. Mol Cell Biol. 1984 Aug;4(8):1653–1656. doi: 10.1128/mcb.4.8.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Van Veldhoven P. P., Brees C., Mannaerts G. P. D-aspartate oxidase, a peroxisomal enzyme in liver of rat and man. Biochim Biophys Acta. 1991 Jan 23;1073(1):203–208. doi: 10.1016/0304-4165(91)90203-s. [DOI] [PubMed] [Google Scholar]
  34. Vanhooren J. C., Fransen M., de Béthune B., Baumgart E., Baes M., Torrekens S., Van Leuven F., Mannaerts G. P., Van Veldhoven P. P. Rat pristanoyl-CoA oxidase. cDNA cloning and recognition of its C-terminal (SQL) by the peroxisomal-targeting signal 1 receptor. Eur J Biochem. 1996 Jul 15;239(2):302–309. doi: 10.1111/j.1432-1033.1996.0302u.x. [DOI] [PubMed] [Google Scholar]
  35. Yamada R., Nagasaki H., Wakabayashi Y., Iwashima A. Presence of D-aspartate oxidase in rat liver and mouse tissues. Biochim Biophys Acta. 1988 May 12;965(2-3):202–205. doi: 10.1016/0304-4165(88)90057-8. [DOI] [PubMed] [Google Scholar]
  36. Yuzaki M., Forrest D., Curran T., Connor J. A. Selective activation of calcium permeability by aspartate in Purkinje cells. Science. 1996 Aug 23;273(5278):1112–1114. doi: 10.1126/science.273.5278.1112. [DOI] [PubMed] [Google Scholar]
  37. Zaar K., Völkl A., Fahimi H. D. D-aspartate oxidase in rat, bovine and sheep kidney cortex is localized in peroxisomes. Biochem J. 1989 Jul 1;261(1):233–238. doi: 10.1042/bj2610233. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES