Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 15;336(Pt 3):541–543. doi: 10.1042/bj3360541

Monocyte-macrophage ferric reductase activity is inhibited by iron and stimulated by cellular differentiation.

J Partridge 1, D F Wallace 1, K B Raja 1, J S Dooley 1, A P Walker 1
PMCID: PMC1219902  PMID: 9841863

Abstract

The enzyme ferric reductase catalyses the reduction of Fe(III) as a prerequisite to its transportation across the cell membrane. Duodenal mucosal biopsies from iron overloaded patients with genetic haemochromatosis (GH) have increased ferric reductase activity and iron absorption compared with controls, yet the GH mucosa is iron deficient. A similar GH-related iron deficiency is also seen in macrophages. The aim of this study was to investigate whether macrophage ferric reductase activity is altered in GH, and to determine ferric reductase activity in monocytes and differentiated macrophages. The erythroleukaemic K562 cell line was studied as a clonal reference cell line. The basal K562 ferric reductase activity is characteristic of a membrane bound enzyme, being both temperature and protease sensitive. Ferric reductase activity was also demonstrated in human leucocyte, monocyte and macrophage preparations. Assays of K562 and macrophage cell supernatants confirmed that the ferric reductase activity was not due to a secreted factor. Assay of ferric reductase in normalized-iron and iron-enriched (100 microM ferric citrate) conditions showed no significant difference between Cys282Tyr (Cys282-->Tyr) homozygous GH macrophages and Cys282-Tyr negative control activities (P>0.05). However, a 900% increase in ferric reductase activity was observed during monocyte to macrophage differentiation (P<0.05), possibly reflecting the co-ordinate up-regulation of iron metabolism in these cells. The demonstration of approx. 25% activity after macrophage differentiation at high free-iron concentrations compared with 'normalized' iron is consistent with repression of human ferric reductase activity by iron. The identification of the human ferric reductase gene and its protein will ultimately provide insight into its regulation and role in mammalian iron metabolism.

Full Text

The Full Text of this article is available as a PDF (85.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple genetic test identifies 90% of UK patients with haemochromatosis. The UK Haemochromatosis Consortium. Gut. 1997 Dec;41(6):841–844. doi: 10.1136/gut.41.6.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson L. C., Nilsson K., Gahmberg C. G. K562--a human erythroleukemic cell line. Int J Cancer. 1979 Feb;23(2):143–147. doi: 10.1002/ijc.2910230202. [DOI] [PubMed] [Google Scholar]
  3. Batey R. G., Lai Chung Fong P., Shamir S., Sherlock S. A non-transferrin-bound serum iron in idiopathic hemochromatosis. Dig Dis Sci. 1980 May;25(5):340–346. doi: 10.1007/BF01308057. [DOI] [PubMed] [Google Scholar]
  4. Bonkowsky H. L., Carpenter S. J., Healey J. F. Iron and the liver: subcellular distribution of iron and decreased microsomal cytochrome P-450 in livers of iron-loaded rats. Arch Pathol Lab Med. 1979 Jan;103(1):21–29. [PubMed] [Google Scholar]
  5. Cottrell B., Jones D. Functional and phenotypic changes associated with the in vitro development of human monocytes into activated macrophages. FEMS Microbiol Immunol. 1990 Dec;2(5-6):333–337. doi: 10.1111/j.1574-6968.1990.tb03537.x. [DOI] [PubMed] [Google Scholar]
  6. Cox T. M. Haemochromatosis. Blood Rev. 1990 Jun;4(2):75–87. doi: 10.1016/0268-960x(90)90030-v. [DOI] [PubMed] [Google Scholar]
  7. Cox T. M., Peters T. J. Uptake of iron by duodenal biopsy specimens from patients with iron-deficiency anaemia and primary haemochromatosis. Lancet. 1978 Jan 21;1(8056):123–124. doi: 10.1016/s0140-6736(78)90420-8. [DOI] [PubMed] [Google Scholar]
  8. Dancis A., Klausner R. D., Hinnebusch A. G., Barriocanal J. G. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2294–2301. doi: 10.1128/mcb.10.5.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dancis A., Roman D. G., Anderson G. J., Hinnebusch A. G., Klausner R. D. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3869–3873. doi: 10.1073/pnas.89.9.3869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dooley J. S., Walker A. P., Macfarlane B., Worwood M. Genetic haemochromatosis. Report of a meeting of physicians and scientists at the Royal Free Hospital School of Medicine. Lancet. 1997 Jun 7;349(9066):1688–1693. doi: 10.1016/s0140-6736(96)09316-6. [DOI] [PubMed] [Google Scholar]
  11. Feder J. N., Gnirke A., Thomas W., Tsuchihashi Z., Ruddy D. A., Basava A., Dormishian F., Domingo R., Jr, Ellis M. C., Fullan A. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996 Aug;13(4):399–408. doi: 10.1038/ng0896-399. [DOI] [PubMed] [Google Scholar]
  12. Feder J. N., Penny D. M., Irrinki A., Lee V. K., Lebrón J. A., Watson N., Tsuchihashi Z., Sigal E., Bjorkman P. J., Schatzman R. C. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1472–1477. doi: 10.1073/pnas.95.4.1472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fillet G., Beguin Y., Baldelli L. Model of reticuloendothelial iron metabolism in humans: abnormal behavior in idiopathic hemochromatosis and in inflammation. Blood. 1989 Aug 1;74(2):844–851. [PubMed] [Google Scholar]
  14. Flanagan P. R., Lam D., Banerjee D., Valberg L. S. Ferritin release by mononuclear cells in hereditary hemochromatosis. J Lab Clin Med. 1989 Feb;113(2):145–150. [PubMed] [Google Scholar]
  15. Gutteridge J. M., Rowley D. A., Griffiths E., Halliwell B. Low-molecular-weight iron complexes and oxygen radical reactions in idiopathic haemochromatosis. Clin Sci (Lond) 1985 Apr;68(4):463–467. doi: 10.1042/cs0680463. [DOI] [PubMed] [Google Scholar]
  16. Lebrón J. A., Bennett M. J., Vaughn D. E., Chirino A. J., Snow P. M., Mintier G. A., Feder J. N., Bjorkman P. J. Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell. 1998 Apr 3;93(1):111–123. doi: 10.1016/s0092-8674(00)81151-4. [DOI] [PubMed] [Google Scholar]
  17. Neumannova V., Richardson D. R., Kriegerbeckova K., Kovar J. Growth of human tumor cell lines in transferrin-free, low-iron medium. In Vitro Cell Dev Biol Anim. 1995 Sep;31(8):625–632. doi: 10.1007/BF02634316. [DOI] [PubMed] [Google Scholar]
  18. Olynyk J. K. Genetic haemochromatosis--preventable rust. Aust N Z J Med. 1994 Dec;24(6):711–716. doi: 10.1111/j.1445-5994.1994.tb01789.x. [DOI] [PubMed] [Google Scholar]
  19. Parkkila S., Waheed A., Britton R. S., Bacon B. R., Zhou X. Y., Tomatsu S., Fleming R. E., Sly W. S. Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13198–13202. doi: 10.1073/pnas.94.24.13198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Parmley R. T., May M. E., Spicer S. S., Buse M. G., Alvarez C. J. Ultrastructural distribution of inorganic iron in normal and iron-loaded hepatic cells. Lab Invest. 1981 May;44(5):475–485. [PubMed] [Google Scholar]
  21. Powell L. A., Halliday J. W. Iron absorption and iron overload. Clin Gastroenterol. 1981 Sep;10(3):707–735. [PubMed] [Google Scholar]
  22. Raja K. B., Pountney D., Bomford A., Przemioslo R., Sherman D., Simpson R. J., Williams R., Peters T. J. A duodenal mucosal abnormality in the reduction of Fe(III) in patients with genetic haemochromatosis. Gut. 1996 May;38(5):765–769. doi: 10.1136/gut.38.5.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Richardson D., Baker E. The uptake of inorganic iron complexes by human melanoma cells. Biochim Biophys Acta. 1991 Jun 7;1093(1):20–28. doi: 10.1016/0167-4889(91)90133-i. [DOI] [PubMed] [Google Scholar]
  24. Riedel H. D., Remus A. J., Fitscher B. A., Stremmel W. Characterization and partial purification of a ferrireductase from human duodenal microvillus membranes. Biochem J. 1995 Aug 1;309(Pt 3):745–748. doi: 10.1042/bj3090745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saab G., Green R., Jurjus A., Sarrou E. Monocyte ferritin in idiopathic haemochromatosis, thalassaemia and liver disease. Scand J Haematol. 1986 Jan;36(1):65–70. doi: 10.1111/j.1600-0609.1986.tb02652.x. [DOI] [PubMed] [Google Scholar]
  26. Summers K. M., Halliday J. W., Powell L. W. Identification of homozygous hemochromatosis subjects by measurement of hepatic iron index. Hepatology. 1990 Jul;12(1):20–25. doi: 10.1002/hep.1840120105. [DOI] [PubMed] [Google Scholar]
  27. Tormey V. J., Faul J., Leonard C., Burke C. M., Dilmec A., Poulter L. W. T-cell cytokines may control the balance of functionally distinct macrophage populations. Immunology. 1997 Apr;90(4):463–469. doi: 10.1046/j.1365-2567.1997.00207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Witte D. L., Crosby W. H., Edwards C. Q., Fairbanks V. F., Mitros F. A. Practice guideline development task force of the College of American Pathologists. Hereditary hemochromatosis. Clin Chim Acta. 1996 Feb 28;245(2):139–200. doi: 10.1016/0009-8981(95)06212-2. [DOI] [PubMed] [Google Scholar]
  29. Yam L. T., Finkel H. E., Weintraub L. R., Crosby W. H. Circulating iron-containing macrophages in hemochromatosis. N Engl J Med. 1968 Sep 5;279(10):512–514. doi: 10.1056/NEJM196809052791003. [DOI] [PubMed] [Google Scholar]
  30. Zhou X. Y., Tomatsu S., Fleming R. E., Parkkila S., Waheed A., Jiang J., Fei Y., Brunt E. M., Ruddy D. A., Prass C. E. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2492–2497. doi: 10.1073/pnas.95.5.2492. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES