Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jan 15;337(Pt 2):153–169.

Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements.

G J Barritt 1
PMCID: PMC1219948  PMID: 9882611

Abstract

Receptor-activated Ca2+ channels (RACCs) play a central role in regulation of the functions of animal cells. Together with voltage-operated Ca2+ channels (VOCCs) and ligand-gated non-selective cation channels, RACCs provide a variety of pathways by which Ca2+ can be delivered to the cytoplasmic space and the endoplasmic reticulum (ER) in order to initiate or maintain specific types of intracellular Ca2+ signal. Store-operated Ca2+ channels (SOCs), which are activated by a decrease in Ca2+ in the ER, are a major subfamily of RACCs. A careful analysis of the available data is required in order to discern the different types of RACCs (differentiated chiefly on the basis of ion selectivity and mechanism of activation) and to properly develop hypotheses for structures and mechanisms of activation. Despite much intensive research, the structures and mechanisms of activation of RACCs are only now beginning to be understood. In considering the physiological functions of the different RACCs, it is useful to consider the specificity for Ca2+ of each type of cation channel and the rate at which Ca2+ flows through a single open channel; the locations of the channels on the plasma membrane (in relation to the ER, cytoskeleton and other intracellular units of structure and function); the Ca2+-responsive enzymes and proteins; and the intracellular buffers and proteins that control the distribution of Ca2+ in the cytoplasmic space. RACCs which are non-selective cation channels can deliver Ca2+ directly to specific regions of the cytoplasmic space, and can also admit Na+, which induces depolarization of the plasma membrane, the opening of VOCCs and the subsequent inflow of Ca2+. SOCs appear to deliver Ca2+ specifically to the ER, thereby maintaining oscillating Ca2+ signals.

Full Text

The Full Text of this article is available as a PDF (237.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applegate T. L., Karjalainen A., Bygrave F. L. Rapid Ca2+ influx induced by the action of dibutylhydroquinone and glucagon in the perfused rat liver. Biochem J. 1997 Apr 15;323(Pt 2):463–467. doi: 10.1042/bj3230463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnon A., Cook B., Gillo B., Montell C., Selinger Z., Minke B. Calmodulin regulation of light adaptation and store-operated dark current in Drosophila photoreceptors. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5894–5899. doi: 10.1073/pnas.94.11.5894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Auld A. M., Bawden M. J., Berven L. A., Harland L., Hughes B. P., Barritt G. J. Injection of rat hepatocyte poly(A)+ RNA to Xenopus laevis oocytes leads to expression of a constitutively-active divalent cation channel distinguishable from endogenous receptor-activated channels. Cell Calcium. 1996 May;19(5):439–452. doi: 10.1016/s0143-4160(96)90117-7. [DOI] [PubMed] [Google Scholar]
  4. Babnigg G., Bowersox S. R., Villereal M. L. The role of pp60c-src in the regulation of calcium entry via store-operated calcium channels. J Biol Chem. 1997 Nov 21;272(47):29434–29437. doi: 10.1074/jbc.272.47.29434. [DOI] [PubMed] [Google Scholar]
  5. Badou A., Savignac M., Moreau M., Leclerc C., Pasquier R., Druet P., Pelletier L. HgCl2-induced interleukin-4 gene expression in T cells involves a protein kinase C-dependent calcium influx through L-type calcium channels. J Biol Chem. 1997 Dec 19;272(51):32411–32418. doi: 10.1074/jbc.272.51.32411. [DOI] [PubMed] [Google Scholar]
  6. Barritt G. J. Does a decrease in subplasmalemmal Ca2+ explain how store-operated Ca2+ channels are opened? Cell Calcium. 1998 Jan;23(1):65–75. doi: 10.1016/s0143-4160(98)90075-6. [DOI] [PubMed] [Google Scholar]
  7. Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
  8. Bennett D. L., Bootman M. D., Berridge M. J., Cheek T. R. Ca2+ entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors. Biochem J. 1998 Jan 15;329(Pt 2):349–357. doi: 10.1042/bj3290349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Berridge M. J. Calcium oscillations. J Biol Chem. 1990 Jun 15;265(17):9583–9586. [PubMed] [Google Scholar]
  10. Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Berridge M. J. Elementary and global aspects of calcium signalling. J Physiol. 1997 Mar 1;499(Pt 2):291–306. doi: 10.1113/jphysiol.1997.sp021927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Berven L. A., Hughes B. P., Barritt G. J. A slowly ADP-ribosylated pertussis-toxin-sensitive GTP-binding regulatory protein is required for vasopressin-stimulated Ca2+ inflow in hepatocytes. Biochem J. 1994 Apr 15;299(Pt 2):399–407. doi: 10.1042/bj2990399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bezprozvanny I., Ehrlich B. E. The inositol 1,4,5-trisphosphate (InsP3) receptor. J Membr Biol. 1995 Jun;145(3):205–216. doi: 10.1007/BF00232713. [DOI] [PubMed] [Google Scholar]
  14. Bird G. S., Putney J. W., Jr Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J Biol Chem. 1993 Oct 15;268(29):21486–21488. [PubMed] [Google Scholar]
  15. Birnbaumer L., Zhu X., Jiang M., Boulay G., Peyton M., Vannier B., Brown D., Platano D., Sadeghi H., Stefani E. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15195–15202. doi: 10.1073/pnas.93.26.15195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bode H. P., Netter K. J. Agonist-releasable intracellular calcium stores and the phenomenon of store-dependent calcium entry. A novel hypothesis based on calcium stores in organelles of the endo- and exocytotic apparatus. Biochem Pharmacol. 1996 Apr 26;51(8):993–1001. doi: 10.1016/0006-2952(96)00048-2. [DOI] [PubMed] [Google Scholar]
  17. Bootman M. D., Berridge M. J., Lipp P. Cooking with calcium: the recipes for composing global signals from elementary events. Cell. 1997 Oct 31;91(3):367–373. doi: 10.1016/s0092-8674(00)80420-1. [DOI] [PubMed] [Google Scholar]
  18. Bootman M. D., Young K. W., Young J. M., Moreton R. B., Berridge M. J. Extracellular calcium concentration controls the frequency of intracellular calcium spiking independently of inositol 1,4,5-trisphosphate production in HeLa cells. Biochem J. 1996 Feb 15;314(Pt 1):347–354. doi: 10.1042/bj3140347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Boulay G., Zhu X., Peyton M., Jiang M., Hurst R., Stefani E., Birnbaumer L. Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem. 1997 Nov 21;272(47):29672–29680. doi: 10.1074/jbc.272.47.29672. [DOI] [PubMed] [Google Scholar]
  20. Braun A. P., Schulman H. A non-selective cation current activated via the multifunctional Ca(2+)-calmodulin-dependent protein kinase in human epithelial cells. J Physiol. 1995 Oct 1;488(Pt 1):37–55. doi: 10.1113/jphysiol.1995.sp020944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Brereton H. M., Harland M. L., Froscio M., Petronijevic T., Barritt G. J. Novel variants of voltage-operated calcium channel alpha 1-subunit transcripts in a rat liver-derived cell line: deletion in the IVS4 voltage sensing region. Cell Calcium. 1997 Jul;22(1):39–52. doi: 10.1016/s0143-4160(97)90088-9. [DOI] [PubMed] [Google Scholar]
  22. Broad L. M., Powis D. A., Taylor C. W. Differentiation of BC3H1 smooth muscle cells changes the bivalent cation selectivity of the capacitative Ca2+ entry pathway. Biochem J. 1996 Jun 15;316(Pt 3):759–764. doi: 10.1042/bj3160759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Burt R. P., Chapple C. R., Marshall I. Alpha1A-adrenoceptor mediated contraction of rat prostatic vas deferens and the involvement of ryanodine stores and Ca2+ influx stimulated by diacylglycerol and PKC. Br J Pharmacol. 1998 Jan;123(2):317–325. doi: 10.1038/sj.bjp.0701588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Byron K., Taylor C. W. Vasopressin stimulation of Ca2+ mobilization, two bivalent cation entry pathways and Ca2+ efflux in A7r5 rat smooth muscle cells. J Physiol. 1995 Jun 1;485(Pt 2):455–468. doi: 10.1113/jphysiol.1995.sp020742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Casteels R., Droogmans G. Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J Physiol. 1981 Aug;317:263–279. doi: 10.1113/jphysiol.1981.sp013824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Cataldi M., Taglialatela M., Guerriero S., Amoroso S., Lombardi G., di Renzo G., Annunziato L. Protein-tyrosine kinases activate while protein-tyrosine phosphatases inhibit L-type calcium channel activity in pituitary GH3 cells. J Biol Chem. 1996 Apr 19;271(16):9441–9446. doi: 10.1074/jbc.271.16.9441. [DOI] [PubMed] [Google Scholar]
  27. Catterall W. A. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531. doi: 10.1146/annurev.bi.64.070195.002425. [DOI] [PubMed] [Google Scholar]
  28. Chiono M., Mahey R., Tate G., Cooper D. M. Capacitative Ca2+ entry exclusively inhibits cAMP synthesis in C6-2B glioma cells. Evidence that physiologically evoked Ca2+ entry regulates Ca(2+)-inhibitable adenylyl cyclase in non-excitable cells. J Biol Chem. 1995 Jan 20;270(3):1149–1155. doi: 10.1074/jbc.270.3.1149. [DOI] [PubMed] [Google Scholar]
  29. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  30. Clementi E., Meldolesi J. Pharmacological and functional properties of voltage-independent Ca2+ channels. Cell Calcium. 1996 Apr;19(4):269–279. doi: 10.1016/s0143-4160(96)90068-8. [DOI] [PubMed] [Google Scholar]
  31. Congar P., Leinekugel X., Ben-Ari Y., Crépel V. A long-lasting calcium-activated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. J Neurosci. 1997 Jul 15;17(14):5366–5379. doi: 10.1523/JNEUROSCI.17-14-05366.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Crofts J. N., Barritt G. J. The liver cell plasma membrane Ca2+ inflow systems exhibit a broad specificity for divalent metal ions. Biochem J. 1990 Aug 1;269(3):579–587. doi: 10.1042/bj2690579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Darvish N., Russell J. T. Neurotransmitter-induced novel modulation of a nonselective cation channel by a cAMP-dependent mechanism in rat pineal cells. J Neurophysiol. 1998 May;79(5):2546–2556. doi: 10.1152/jn.1998.79.5.2546. [DOI] [PubMed] [Google Scholar]
  34. Davis W., Halliwell E. L., Sage S. O., Allen J. M. Increased capacity for store regulated calcium influx in U937 cells differentiated by treatment with dibutyryl cAMP. Cell Calcium. 1995 May;17(5):345–353. doi: 10.1016/0143-4160(95)90108-6. [DOI] [PubMed] [Google Scholar]
  35. De Waard M., Liu H., Walker D., Scott V. E., Gurnett C. A., Campbell K. P. Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature. 1997 Jan 30;385(6615):446–450. doi: 10.1038/385446a0. [DOI] [PubMed] [Google Scholar]
  36. DeLisle S., Marksberry E. W., Bonnett C., Jenkins D. J., Potter B. V., Takahashi M., Tanzawa K. Adenophostin A can stimulate Ca2+ influx without depleting the inositol 1,4,5-trisphosphate-sensitive Ca2+ stores in the Xenopus oocyte. J Biol Chem. 1997 Apr 11;272(15):9956–9961. doi: 10.1074/jbc.272.15.9956. [DOI] [PubMed] [Google Scholar]
  37. Demaurex N., Lew D. P., Krause K. H. Cyclopiazonic acid depletes intracellular Ca2+ stores and activates an influx pathway for divalent cations in HL-60 cells. J Biol Chem. 1992 Feb 5;267(4):2318–2324. [PubMed] [Google Scholar]
  38. Densmore J. J., Haverstick D. M., Szabo G., Gray L. S. A voltage-operable current is involved in Ca2+ entry in human lymphocytes whereas ICRAC has no apparent role. Am J Physiol. 1996 Nov;271(5 Pt 1):C1494–C1503. doi: 10.1152/ajpcell.1996.271.5.C1494. [DOI] [PubMed] [Google Scholar]
  39. Dessy C., Godfraind T. The effect of L-type calcium channel modulators on the mobilization of intracellular calcium stores in guinea-pig intestinal smooth muscle. Br J Pharmacol. 1996 Sep;119(1):142–148. doi: 10.1111/j.1476-5381.1996.tb15687.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Dong Y., Kunze D. L., Vaca L., Schilling W. P. Ins(1,4,5)P3 activates Drosophila cation channel Trpl in recombinant baculovirus-infected Sf9 insect cells. Am J Physiol. 1995 Nov;269(5 Pt 1):C1332–C1339. doi: 10.1152/ajpcell.1995.269.5.C1332. [DOI] [PubMed] [Google Scholar]
  41. Duncan R. L., Kizer N., Barry E. L., Friedman P. A., Hruska K. A. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1864–1869. doi: 10.1073/pnas.93.5.1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Dunlap K. Calcium channels. Integration hot-spot gets hotter. Nature. 1997 Jan 30;385(6615):394-5, 397. doi: 10.1038/385394a0. [DOI] [PubMed] [Google Scholar]
  43. Dunlap K., Luebke J. I., Turner T. J. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci. 1995 Feb;18(2):89–98. [PubMed] [Google Scholar]
  44. Empson R. M., Galione A. Cyclic ADP-ribose enhances coupling between voltage-gated Ca2+ entry and intracellular Ca2+ release. J Biol Chem. 1997 Aug 22;272(34):20967–20970. doi: 10.1074/jbc.272.34.20967. [DOI] [PubMed] [Google Scholar]
  45. Fagan K. A., Mahey R., Cooper D. M. Functional co-localization of transfected Ca(2+)-stimulable adenylyl cyclases with capacitative Ca2+ entry sites. J Biol Chem. 1996 May 24;271(21):12438–12444. doi: 10.1074/jbc.271.21.12438. [DOI] [PubMed] [Google Scholar]
  46. Fagan K. A., Mons N., Cooper D. M. Dependence of the Ca2+-inhibitable adenylyl cyclase of C6-2B glioma cells on capacitative Ca2+ entry. J Biol Chem. 1998 Apr 10;273(15):9297–9305. doi: 10.1074/jbc.273.15.9297. [DOI] [PubMed] [Google Scholar]
  47. Fanger C. M., Hoth M., Crabtree G. R., Lewis R. S. Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels. J Cell Biol. 1995 Nov;131(3):655–667. doi: 10.1083/jcb.131.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Fasolato C., Hoth M., Matthews G., Penner R. Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3068–3072. doi: 10.1073/pnas.90.7.3068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Fasolato C., Hoth M., Penner R. A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem. 1993 Oct 5;268(28):20737–20740. [PubMed] [Google Scholar]
  50. Fasolato C., Innocenti B., Pozzan T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci. 1994 Mar;15(3):77–83. doi: 10.1016/0165-6147(94)90282-8. [DOI] [PubMed] [Google Scholar]
  51. Fasolato C., Nilius B. Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Arch. 1998 Jun;436(1):69–74. doi: 10.1007/s004240050605. [DOI] [PubMed] [Google Scholar]
  52. Fernando K. C., Barritt G. J. Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanide ions. Biochim Biophys Acta. 1995 Jul 20;1268(1):97–106. doi: 10.1016/0167-4889(95)00041-p. [DOI] [PubMed] [Google Scholar]
  53. Fernando K. C., Gregory R. B., Katsis F., Kemp B. E., Barritt G. J. Evidence that a low-molecular-mass GTP-binding protein is required for store-activated Ca2+ inflow in hepatocytes. Biochem J. 1997 Dec 1;328(Pt 2):463–471. doi: 10.1042/bj3280463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Finn J. T., Grunwald M. E., Yau K. W. Cyclic nucleotide-gated ion channels: an extended family with diverse functions. Annu Rev Physiol. 1996;58:395–426. doi: 10.1146/annurev.ph.58.030196.002143. [DOI] [PubMed] [Google Scholar]
  55. Fischer M., Schnell N., Chattaway J., Davies P., Dixon G., Sanders D. The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett. 1997 Dec 15;419(2-3):259–262. doi: 10.1016/s0014-5793(97)01466-x. [DOI] [PubMed] [Google Scholar]
  56. Floto R. A., Mahaut-Smith M. P., Allen J. M., Somasundaram B. Differentiation of the human monocytic cell line U937 results in an upregulation of the calcium release-activated current, ICRAC. J Physiol. 1996 Sep 1;495(Pt 2):331–338. doi: 10.1113/jphysiol.1996.sp021597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Fluckiger A. C., Li Z., Kato R. M., Wahl M. I., Ochs H. D., Longnecker R., Kinet J. P., Witte O. N., Scharenberg A. M., Rawlings D. J. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 1998 Apr 1;17(7):1973–1985. doi: 10.1093/emboj/17.7.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Foder B., Scharff O., Thastrup O. Ca2+ transients and Mn2+ entry in human neutrophils induced by thapsigargin. Cell Calcium. 1989 Oct;10(7):477–490. doi: 10.1016/0143-4160(89)90025-0. [DOI] [PubMed] [Google Scholar]
  59. Friel D. D. TRP: its role in phototransduction and store-operated Ca2+ entry. Cell. 1996 May 31;85(5):617–619. doi: 10.1016/s0092-8674(00)81021-1. [DOI] [PubMed] [Google Scholar]
  60. Friel D. D., Tsien R. W. An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i. J Neurosci. 1994 Jul;14(7):4007–4024. doi: 10.1523/JNEUROSCI.14-07-04007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Gardner J. P., Balasubramanyam M., Studzinski G. P. Up-regulation of Ca2+ influx mediated by store-operated channels in HL60 cells induced to differentiate by 1 alpha,25-dihydroxyvitamin D3. J Cell Physiol. 1997 Sep;172(3):284–295. doi: 10.1002/(SICI)1097-4652(199709)172:3<284::AID-JCP2>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  62. Glennon M. C., Bird G. S., Kwan C. Y., Putney J. W., Jr Actions of vasopressin and the Ca(2+)-ATPase inhibitor, thapsigargin, on Ca2+ signaling in hepatocytes. J Biol Chem. 1992 Apr 25;267(12):8230–8233. [PubMed] [Google Scholar]
  63. Gollasch M., Kleuss C., Hescheler J., Wittig B., Schultz G. Gi2 and protein kinase C are required for thyrotropin-releasing hormone-induced stimulation of voltage-dependent Ca2+ channels in rat pituitary GH3 cells. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6265–6269. doi: 10.1073/pnas.90.13.6265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Golovina V. A., Blaustein M. P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science. 1997 Mar 14;275(5306):1643–1648. doi: 10.1126/science.275.5306.1643. [DOI] [PubMed] [Google Scholar]
  65. Graier W. F., Paltauf-Doburzynska J., Hill B. J., Fleischhacker E., Hoebel B. G., Kostner G. M., Sturek M. Submaximal stimulation of porcine endothelial cells causes focal Ca2+ elevation beneath the cell membrane. J Physiol. 1998 Jan 1;506(Pt 1):109–125. doi: 10.1111/j.1469-7793.1998.109bx.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Grazzini E., Durroux T., Payet M. D., Bilodeau L., Gallo-Payet N., Guillon G. Membrane-delimited G protein-mediated coupling between V1a vasopressin receptor and dihydropyridine binding sites in rat glomerulosa cells. Mol Pharmacol. 1996 Nov;50(5):1273–1283. [PubMed] [Google Scholar]
  67. Green A. K., Cobbold P. H., Dixon C. J. Effects on the hepatocyte [Ca2+]i oscillator of inhibition of the plasma membrane Ca2+ pump by carboxyeosin or glucagon-(19-29). Cell Calcium. 1997 Aug;22(2):99–109. doi: 10.1016/s0143-4160(97)90110-x. [DOI] [PubMed] [Google Scholar]
  68. Gregory R. B., Barritt G. J. Store-activated Ca2+ inflow in Xenopus laevis oocytes: inhibition by primaquine and evaluation of the role of membrane fusion. Biochem J. 1996 Nov 1;319(Pt 3):755–760. doi: 10.1042/bj3190755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Haj-Dahmane S., Andrade R. Calcium-activated cation nonselective current contributes to the fast afterdepolarization in rat prefrontal cortex neurons. J Neurophysiol. 1997 Oct;78(4):1983–1989. doi: 10.1152/jn.1997.78.4.1983. [DOI] [PubMed] [Google Scholar]
  70. Hajnóczky G., Lin C., Thomas A. P. Luminal communication between intracellular calcium stores modulated by GTP and the cytoskeleton. J Biol Chem. 1994 Apr 8;269(14):10280–10287. [PubMed] [Google Scholar]
  71. Hallam T. J., Rink T. J. Agonists stimulate divalent cation channels in the plasma membrane of human platelets. FEBS Lett. 1985 Jul 8;186(2):175–179. doi: 10.1016/0014-5793(85)80703-1. [DOI] [PubMed] [Google Scholar]
  72. Hardie R. C. Excitation of Drosophila photoreceptors by BAPTA and ionomycin: evidence for capacitative Ca2+ entry? Cell Calcium. 1996 Oct;20(4):315–327. doi: 10.1016/s0143-4160(96)90037-8. [DOI] [PubMed] [Google Scholar]
  73. Hardie R. C., Minke B. Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci. 1993 Sep;16(9):371–376. doi: 10.1016/0166-2236(93)90095-4. [DOI] [PubMed] [Google Scholar]
  74. Hartzell H. C., Machaca K., Hirayama Y. Effects of adenophostin-A and inositol-1,4,5-trisphosphate on Cl- currents in Xenopus laevis oocytes. Mol Pharmacol. 1997 Apr;51(4):683–692. doi: 10.1124/mol.51.4.683. [DOI] [PubMed] [Google Scholar]
  75. Hide M., Beaven M. A. Calcium influx in a rat mast cell (RBL-2H3) line. Use of multivalent metal ions to define its characteristics and role in exocytosis. J Biol Chem. 1991 Aug 15;266(23):15221–15229. [PubMed] [Google Scholar]
  76. Hoebel B. G., Kostner G. M., Graier W. F. Activation of microsomal cytochrome P450 mono-oxygenase by Ca2+ store depletion and its contribution to Ca2+ entry in porcine aortic endothelial cells. Br J Pharmacol. 1997 Aug;121(8):1579–1588. doi: 10.1038/sj.bjp.0701304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Hofer A. M., Fasolato C., Pozzan T. Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of ICRAC and intraluminal [Ca2+]. J Cell Biol. 1998 Jan 26;140(2):325–334. doi: 10.1083/jcb.140.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Hofer A. M., Landolfi B., Debellis L., Pozzan T., Curci S. Free [Ca2+] dynamics measured in agonist-sensitive stores of single living intact cells: a new look at the refilling process. EMBO J. 1998 Apr 1;17(7):1986–1995. doi: 10.1093/emboj/17.7.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Hopf F. W., Reddy P., Hong J., Steinhardt R. A. A capacitative calcium current in cultured skeletal muscle cells is mediated by the calcium-specific leak channel and inhibited by dihydropyridine compounds. J Biol Chem. 1996 Sep 13;271(37):22358–22367. doi: 10.1074/jbc.271.37.22358. [DOI] [PubMed] [Google Scholar]
  80. Horne J. H., Meyer T. Elementary calcium-release units induced by inositol trisphosphate. Science. 1997 Jun 13;276(5319):1690–1693. doi: 10.1126/science.276.5319.1690. [DOI] [PubMed] [Google Scholar]
  81. Hoth M. Depletion of intracellular calcium stores activates an outward potassium current in mast and RBL-1 cells that is correlated with CRAC channel activation. FEBS Lett. 1996 Jul 29;390(3):285–288. doi: 10.1016/0014-5793(96)00673-4. [DOI] [PubMed] [Google Scholar]
  82. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  83. Hughes B. P., Milton S. E., Barritt G. J. Effects of vasopressin and La3+ on plasma-membrane Ca2+ inflow and Ca2+ disposition in isolated hepatocytes. Evidence that vasopressin inhibits Ca2+ disposition. Biochem J. 1986 Sep 15;238(3):793–800. doi: 10.1042/bj2380793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Hurst R. S., Zhu X., Boulay G., Birnbaumer L., Stefani E. Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Lett. 1998 Feb 6;422(3):333–338. doi: 10.1016/s0014-5793(98)00035-0. [DOI] [PubMed] [Google Scholar]
  85. Irvine R. F. 'Quantal' Ca2+ release and the control of Ca2+ entry by inositol phosphates--a possible mechanism. FEBS Lett. 1990 Apr 9;263(1):5–9. doi: 10.1016/0014-5793(90)80692-c. [DOI] [PubMed] [Google Scholar]
  86. Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Iwasawa K., Nakajima T., Hazama H., Goto A., Shin W. S., Toyo-oka T., Omata M. Effects of extracellular pH on receptor-mediated Ca2+ influx in A7r5 rat smooth muscle cells: involvement of two different types of channel. J Physiol. 1997 Sep 1;503(Pt 2):237–251. doi: 10.1111/j.1469-7793.1997.237bh.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Jacob R. Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. J Physiol. 1990 Feb;421:55–77. doi: 10.1113/jphysiol.1990.sp017933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Jaconi M. E., Lew D. P., Monod A., Krause K. H. The regulation of store-dependent Ca2+ influx in HL-60 granulocytes involves GTP-sensitive elements. J Biol Chem. 1993 Dec 15;268(35):26075–26078. [PubMed] [Google Scholar]
  90. Jaconi M., Pyle J., Bortolon R., Ou J., Clapham D. Calcium release and influx colocalize to the endoplasmic reticulum. Curr Biol. 1997 Aug 1;7(8):599–602. doi: 10.1016/s0960-9822(06)00259-4. [DOI] [PubMed] [Google Scholar]
  91. Jan L. Y., Jan Y. N. Tracing the roots of ion channels. Cell. 1992 May 29;69(5):715–718. doi: 10.1016/0092-8674(92)90280-p. [DOI] [PubMed] [Google Scholar]
  92. Jayaraman T., Ondriasová E., Ondrias K., Harnick D. J., Marks A. R. The inositol 1,4,5-trisphosphate receptor is essential for T-cell receptor signaling. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6007–6011. doi: 10.1073/pnas.92.13.6007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Kass G. E., Webb D. L., Chow S. C., Llopis J., Berggren P. O. Receptor-mediated Mn2+ influx in rat hepatocytes: comparison of cells loaded with Fura-2 ester and cells microinjected with Fura-2 salt. Biochem J. 1994 Aug 15;302(Pt 1):5–9. doi: 10.1042/bj3020005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Khan A. A., Soloski M. J., Sharp A. H., Schilling G., Sabatini D. M., Li S. H., Ross C. A., Snyder S. H. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science. 1996 Jul 26;273(5274):503–507. doi: 10.1126/science.273.5274.503. [DOI] [PubMed] [Google Scholar]
  95. Kim T. D., Eddlestone G. T., Mahmoud S. F., Kuchtey J., Fewtrell C. Correlating Ca2+ responses and secretion in individual RBL-2H3 mucosal mast cells. J Biol Chem. 1997 Dec 12;272(50):31225–31229. doi: 10.1074/jbc.272.50.31225. [DOI] [PubMed] [Google Scholar]
  96. Kiselyov K. I., Mamin A. G., Semyonova S. B., Mozhayeva G. N. Low-conductance high selective inositol (1,4,5)-trisphosphate activated Ca2+ channels in plasma membrane of A431 carcinoma cells. FEBS Lett. 1997 May 5;407(3):309–312. doi: 10.1016/s0014-5793(97)00366-9. [DOI] [PubMed] [Google Scholar]
  97. Klingauf J., Neher E. Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J. 1997 Feb;72(2 Pt 1):674–690. doi: 10.1016/s0006-3495(97)78704-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Krause E., Pfeiffer F., Schmid A., Schulz I. Depletion of intracellular calcium stores activates a calcium conducting nonselective cation current in mouse pancreatic acinar cells. J Biol Chem. 1996 Dec 20;271(51):32523–32528. doi: 10.1074/jbc.271.51.32523. [DOI] [PubMed] [Google Scholar]
  99. Krautwurst D., Seifert R., Hescheler J., Schultz G. Formyl peptides and ATP stimulate Ca2+ and Na+ inward currents through non-selective cation channels via G-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells. Involvement of Ca2+ and Na+ in the activation of beta-glucuronidase release and superoxide production. Biochem J. 1992 Dec 15;288(Pt 3):1025–1035. doi: 10.1042/bj2881025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Kuno M., Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature. 1987 Mar 19;326(6110):301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
  101. Kwan C. Y., Putney J. W., Jr Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem. 1990 Jan 15;265(2):678–684. [PubMed] [Google Scholar]
  102. Lan L., Bawden M. J., Auld A. M., Barritt G. J. Expression of Drosophila trpl cRNA in Xenopus laevis oocytes leads to the appearance of a Ca2+ channel activated by Ca2+ and calmodulin, and by guanosine 5'[gamma-thio]triphosphate. Biochem J. 1996 Jun 15;316(Pt 3):793–803. doi: 10.1042/bj3160793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Lan L., Brereton H., Barritt G. J. The role of calmodulin-binding sites in the regulation of the Drosophila TRPL cation channel expressed in Xenopus laevis oocytes by ca2+, inositol 1,4,5-trisphosphate and GTP-binding proteins. Biochem J. 1998 Mar 15;330(Pt 3):1149–1158. doi: 10.1042/bj3301149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Lawrie A. M., Rizzuto R., Pozzan T., Simpson A. W. A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem. 1996 May 3;271(18):10753–10759. doi: 10.1074/jbc.271.18.10753. [DOI] [PubMed] [Google Scholar]
  105. Leech C. A., Habener J. F. A role for Ca2+-sensitive nonselective cation channels in regulating the membrane potential of pancreatic beta-cells. Diabetes. 1998 Jul;47(7):1066–1073. doi: 10.2337/diabetes.47.7.1066. [DOI] [PubMed] [Google Scholar]
  106. Leech C. A., Habener J. F. Insulinotropic glucagon-like peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin. J Biol Chem. 1997 Jul 18;272(29):17987–17993. doi: 10.1074/jbc.272.29.17987. [DOI] [PubMed] [Google Scholar]
  107. Lenz T., Kleineke J. W. Hormone-induced rise in cytosolic Ca2+ in axolotl hepatocytes: properties of the Ca2+ influx channel. Am J Physiol. 1997 Nov;273(5 Pt 1):C1526–C1532. doi: 10.1152/ajpcell.1997.273.5.C1526. [DOI] [PubMed] [Google Scholar]
  108. Lewis R. S., Cahalan M. D. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul. 1989 Nov;1(1):99–112. doi: 10.1091/mbc.1.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Lidofsky S. D., Sostman A., Fitz J. G. Regulation of cation-selective channels in liver cells. J Membr Biol. 1997 Jun 1;157(3):231–236. doi: 10.1007/s002329900231. [DOI] [PubMed] [Google Scholar]
  110. Lidofsky S. D., Xie M. H., Sostman A., Scharschmidt B. F., Fitz J. G. Vasopressin increases cytosolic sodium concentration in hepatocytes and activates calcium influx through cation-selective channels. J Biol Chem. 1993 Jul 15;268(20):14632–14636. [PubMed] [Google Scholar]
  111. Llopis J., Kass G. E., Gahm A., Orrenius S. Evidence for two pathways of receptor-mediated Ca2+ entry in hepatocytes. Biochem J. 1992 May 15;284(Pt 1):243–247. doi: 10.1042/bj2840243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Loirand G., Pacaud P., Baron A., Mironneau C., Mironneau J. Large conductance calcium-activated non-selective cation channel in smooth muscle cells isolated from rat portal vein. J Physiol. 1991 Jun;437:461–475. doi: 10.1113/jphysiol.1991.sp018606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Ma Y., Kobrinsky E., Marks A. R. Cloning and expression of a novel truncated calcium channel from non-excitable cells. J Biol Chem. 1995 Jan 6;270(1):483–493. doi: 10.1074/jbc.270.1.483. [DOI] [PubMed] [Google Scholar]
  114. Macrez-Leprêtre N., Kalkbrenner F., Schultz G., Mironneau J. Distinct functions of Gq and G11 proteins in coupling alpha1-adrenoreceptors to Ca2+ release and Ca2+ entry in rat portal vein myocytes. J Biol Chem. 1997 Feb 21;272(8):5261–5268. doi: 10.1074/jbc.272.8.5261. [DOI] [PubMed] [Google Scholar]
  115. Magnus G., Keizer J. Minimal model of beta-cell mitochondrial Ca2+ handling. Am J Physiol. 1997 Aug;273(2 Pt 1):C717–C733. doi: 10.1152/ajpcell.1997.273.2.C717. [DOI] [PubMed] [Google Scholar]
  116. Mak D. O., Foskett J. K. Single-channel kinetics, inactivation, and spatial distribution of inositol trisphosphate (IP3) receptors in Xenopus oocyte nucleus. J Gen Physiol. 1997 May;109(5):571–587. doi: 10.1085/jgp.109.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Meszaros J. G., Karin N. J., Akanbi K., Farach-Carson M. C. Down-regulation of L-type Ca2+ channel transcript levels by 1,25-dihyroxyvitamin D3. Osteoblastic cells express L-type alpha1C Ca2+ channel isoforms. J Biol Chem. 1996 Dec 20;271(51):32981–32985. doi: 10.1074/jbc.271.51.32981. [DOI] [PubMed] [Google Scholar]
  118. Miller C. Allosteric proteins. Cuddling up to channel activation. Nature. 1997 Sep 25;389(6649):328–329. doi: 10.1038/38599. [DOI] [PubMed] [Google Scholar]
  119. Missiaen L., De Smedt H., Pary J. B., Oike M., Casteels R. Kinetics of empty store-activated Ca2+ influx in HeLa cells. J Biol Chem. 1994 Feb 25;269(8):5817–5823. [PubMed] [Google Scholar]
  120. Mogami H., Nakano K., Tepikin A. V., Petersen O. H. Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell. 1997 Jan 10;88(1):49–55. doi: 10.1016/s0092-8674(00)81857-7. [DOI] [PubMed] [Google Scholar]
  121. Mogami H., Tepikin A. V., Petersen O. H. Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. EMBO J. 1998 Jan 15;17(2):435–442. doi: 10.1093/emboj/17.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Monk P. D., Carne A., Liu S. H., Ford J. W., Keen J. N., Findlay J. B. Isolation, cloning, and characterisation of a trp homologue from squid (Loligo forbesi) photoreceptor membranes. J Neurochem. 1996 Dec;67(6):2227–2235. doi: 10.1046/j.1471-4159.1996.67062227.x. [DOI] [PubMed] [Google Scholar]
  123. Montell C. New light on TRP and TRPL. Mol Pharmacol. 1997 Nov;52(5):755–763. doi: 10.1124/mol.52.5.755. [DOI] [PubMed] [Google Scholar]
  124. Montell C., Rubin G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989 Apr;2(4):1313–1323. doi: 10.1016/0896-6273(89)90069-x. [DOI] [PubMed] [Google Scholar]
  125. Montell C. TRP trapped in fly signaling web. Curr Opin Neurobiol. 1998 Jun;8(3):389–397. doi: 10.1016/s0959-4388(98)80066-4. [DOI] [PubMed] [Google Scholar]
  126. Mozhayeva G. N., Naumov A. P., Kuryshev Y. A. Inositol 1,4,5-trisphosphate activates two types of Ca2(+)-permeable channels in human carcinoma cells. FEBS Lett. 1990 Dec 17;277(1-2):233–234. doi: 10.1016/0014-5793(90)80853-b. [DOI] [PubMed] [Google Scholar]
  127. Munaron L., Antoniotti S., Distasi C., Lovisolo D. Arachidonic acid mediates calcium influx induced by basic fibroblast growth factor in Balb-c 3T3 fibroblasts. Cell Calcium. 1997 Sep;22(3):179–188. doi: 10.1016/s0143-4160(97)90011-7. [DOI] [PubMed] [Google Scholar]
  128. Niemeyer B. A., Suzuki E., Scott K., Jalink K., Zuker C. S. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell. 1996 May 31;85(5):651–659. doi: 10.1016/s0092-8674(00)81232-5. [DOI] [PubMed] [Google Scholar]
  129. Nüsse O., Serrander L., Foyouzi-Youssefi R., Monod A., Lew D. P., Krause K. H. Store-operated Ca2+ influx and stimulation of exocytosis in HL-60 granulocytes. J Biol Chem. 1997 Nov 7;272(45):28360–28367. doi: 10.1074/jbc.272.45.28360. [DOI] [PubMed] [Google Scholar]
  130. Obukhov A. G., Harteneck C., Zobel A., Harhammer R., Kalkbrenner F., Leopoldt D., Lückhoff A., Nürnberg B., Schultz G. Direct activation of trpl cation channels by G alpha11 subunits. EMBO J. 1996 Nov 1;15(21):5833–5838. [PMC free article] [PubMed] [Google Scholar]
  131. Obukhov A. G., Schultz G., Lückhoff A. Regulation of heterologously expressed transient receptor potential-like channels by calcium ions. Neuroscience. 1998 Jul;85(2):487–495. doi: 10.1016/s0306-4522(97)00616-7. [DOI] [PubMed] [Google Scholar]
  132. Okada T., Shimizu S., Wakamori M., Maeda A., Kurosaki T., Takada N., Imoto K., Mori Y. Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem. 1998 Apr 24;273(17):10279–10287. doi: 10.1074/jbc.273.17.10279. [DOI] [PubMed] [Google Scholar]
  133. Paas Y. The macro- and microarchitectures of the ligand-binding domain of glutamate receptors. Trends Neurosci. 1998 Mar;21(3):117–125. doi: 10.1016/s0166-2236(97)01184-3. [DOI] [PubMed] [Google Scholar]
  134. Pacaud P., Loirand G., Grégoire G., Mironneau C., Mironneau J. Noradrenaline-activated heparin-sensitive Ca2+ entry after depletion of intracellular Ca2+ store in portal vein smooth muscle cells. J Biol Chem. 1993 Feb 25;268(6):3866–3872. [PubMed] [Google Scholar]
  135. Paidhungat M., Garrett S. A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol. 1997 Nov;17(11):6339–6347. doi: 10.1128/mcb.17.11.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Parekh A. B., Fleig A., Penner R. The store-operated calcium current I(CRAC): nonlinear activation by InsP3 and dissociation from calcium release. Cell. 1997 Jun 13;89(6):973–980. doi: 10.1016/s0092-8674(00)80282-2. [DOI] [PubMed] [Google Scholar]
  137. Parekh A. B., Penner R. Store depletion and calcium influx. Physiol Rev. 1997 Oct;77(4):901–930. doi: 10.1152/physrev.1997.77.4.901. [DOI] [PubMed] [Google Scholar]
  138. Parekh A. B., Terlau H., Stühmer W. Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature. 1993 Aug 26;364(6440):814–818. doi: 10.1038/364814a0. [DOI] [PubMed] [Google Scholar]
  139. Partiseti M., Le Deist F., Hivroz C., Fischer A., Korn H., Choquet D. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J Biol Chem. 1994 Dec 23;269(51):32327–32335. [PubMed] [Google Scholar]
  140. Peppelenbosch M. P., Tertoolen L. G., den Hertog J., de Laat S. W. Epidermal growth factor activates calcium channels by phospholipase A2/5-lipoxygenase-mediated leukotriene C4 production. Cell. 1992 Apr 17;69(2):295–303. doi: 10.1016/0092-8674(92)90410-e. [DOI] [PubMed] [Google Scholar]
  141. Petersen C. C., Berridge M. J., Borgese M. F., Bennett D. L. Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J. 1995 Oct 1;311(Pt 1):41–44. doi: 10.1042/bj3110041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Petersen C. C., Berridge M. J. Capacitative calcium entry is colocalised with calcium release in Xenopus oocytes: evidence against a highly diffusible calcium influx factor. Pflugers Arch. 1996 Jun;432(2):286–292. doi: 10.1007/s004240050135. [DOI] [PubMed] [Google Scholar]
  143. Petersen C. C., Berridge M. J. G-protein regulation of capacitative calcium entry may be mediated by protein kinases A and C in Xenopus oocytes. Biochem J. 1995 May 1;307(Pt 3):663–668. doi: 10.1042/bj3070663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Philipp S., Hambrecht J., Braslavski L., Schroth G., Freichel M., Murakami M., Cavalié A., Flockerzi V. A novel capacitative calcium entry channel expressed in excitable cells. EMBO J. 1998 Aug 3;17(15):4274–4282. doi: 10.1093/emboj/17.15.4274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Phillips A. M., Bull A., Kelly L. E. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron. 1992 Apr;8(4):631–642. doi: 10.1016/0896-6273(92)90085-r. [DOI] [PubMed] [Google Scholar]
  146. Poggioli J., Putney J. W., Jr Net calcium fluxes in rat parotid acinar cells: evidence for a hormone-sensitive calcium pool in or near the plasma membrane. Pflugers Arch. 1982 Jan;392(3):239–243. doi: 10.1007/BF00584303. [DOI] [PubMed] [Google Scholar]
  147. Preuss K. D., Nöller J. K., Krause E., Göbel A., Schulz I. Expression and characterization of a trpl homolog from rat. Biochem Biophys Res Commun. 1997 Nov 7;240(1):167–172. doi: 10.1006/bbrc.1997.7528. [DOI] [PubMed] [Google Scholar]
  148. Putney J. W., Jr, Bird G. S. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev. 1993 Oct;14(5):610–631. doi: 10.1210/edrv-14-5-610. [DOI] [PubMed] [Google Scholar]
  149. Putney J. W., Jr Calcium signaling: up, down, up, down...what's the point? Science. 1998 Jan 9;279(5348):191–192. doi: 10.1126/science.279.5348.191. [DOI] [PubMed] [Google Scholar]
  150. Putney J. W., Jr Type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry. Cell Calcium. 1997 Mar;21(3):257–261. doi: 10.1016/s0143-4160(97)90050-6. [DOI] [PubMed] [Google Scholar]
  151. Randriamampita C., Tsien R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993 Aug 26;364(6440):809–814. doi: 10.1038/364809a0. [DOI] [PubMed] [Google Scholar]
  152. Restrepo D., Teeter J. H., Schild D. Second messenger signaling in olfactory transduction. J Neurobiol. 1996 May;30(1):37–48. doi: 10.1002/(SICI)1097-4695(199605)30:1<37::AID-NEU4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  153. Ribeiro C. M., Reece J., Putney J. W., Jr Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. J Biol Chem. 1997 Oct 17;272(42):26555–26561. doi: 10.1074/jbc.272.42.26555. [DOI] [PubMed] [Google Scholar]
  154. Sadighi Akha A. A., Willmott N. J., Brickley K., Dolphin A. C., Galione A., Hunt S. V. Anti-Ig-induced calcium influx in rat B lymphocytes mediated by cGMP through a dihydropyridine-sensitive channel. J Biol Chem. 1996 Mar 29;271(13):7297–7300. doi: 10.1074/jbc.271.13.7297. [DOI] [PubMed] [Google Scholar]
  155. Schilling W. P., Rajan L., Strobl-Jager E. Characterization of the bradykinin-stimulated calcium influx pathway of cultured vascular endothelial cells. Saturability, selectivity, and kinetics. J Biol Chem. 1989 Aug 5;264(22):12838–12848. [PubMed] [Google Scholar]
  156. Schöfl C., Rössig L., Leitolf H., Mader T., von zur Mühlen A., Brabant G. Generation of repetitive Ca2+ transients by bombesin requires intracellular release and influx of Ca2+ through voltage-dependent and voltage independent channels in single HIT cells. Cell Calcium. 1996 Jun;19(6):485–493. doi: 10.1016/s0143-4160(96)90057-3. [DOI] [PubMed] [Google Scholar]
  157. Scott K., Zuker C. TRP, TRPL and trouble in photoreceptor cells. Curr Opin Neurobiol. 1998 Jun;8(3):383–388. doi: 10.1016/s0959-4388(98)80065-2. [DOI] [PubMed] [Google Scholar]
  158. Shuttleworth T. J. Arachidonic acid activates the noncapacitative entry of Ca2+ during [Ca2+]i oscillations. J Biol Chem. 1996 Sep 6;271(36):21720–21725. doi: 10.1074/jbc.271.36.21720. [DOI] [PubMed] [Google Scholar]
  159. Shuttleworth T. J., Thompson J. L. Evidence for a non-capacitative Ca2+ entry during [Ca2+] oscillations. Biochem J. 1996 Jun 15;316(Pt 3):819–824. doi: 10.1042/bj3160819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Shuttleworth T. J., Thompson J. L. Muscarinic receptor activation of arachidonate-mediated Ca2+ entry in HEK293 cells is independent of phospholipase C. J Biol Chem. 1998 Dec 4;273(49):32636–32643. doi: 10.1074/jbc.273.49.32636. [DOI] [PubMed] [Google Scholar]
  161. Simpson P. B., Mehotra S., Lange G. D., Russell J. T. High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J Biol Chem. 1997 Sep 5;272(36):22654–22661. doi: 10.1074/jbc.272.36.22654. [DOI] [PubMed] [Google Scholar]
  162. Singer-Lahat D., Liu J., Wess J., Felder C. C. The third intracellular domain of the m3 muscarinic receptor determines coupling to calcium influx in transfected Chinese hamster ovary cells. FEBS Lett. 1996 May 13;386(1):51–54. doi: 10.1016/0014-5793(96)00398-5. [DOI] [PubMed] [Google Scholar]
  163. Singer-Lahat D., Rojas E., Felder C. C. A9 fibroblasts transfected with the m3 muscarinic receptor clone express a Ca2+ channel activated by carbachol, GTP and GDP. J Membr Biol. 1997 Sep 1;159(1):21–28. doi: 10.1007/s002329900265. [DOI] [PubMed] [Google Scholar]
  164. Sinkins W. G., Estacion M., Schilling W. P. Functional expression of TrpC1: a human homologue of the Drosophila Trp channel. Biochem J. 1998 Apr 1;331(Pt 1):331–339. doi: 10.1042/bj3310331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Skryma R., Prevarskaya N., Vacher P., Dufy B. Voltage-dependent Ca2+ channels in Chinese hamster ovary (CHO) cells. FEBS Lett. 1994 Aug 1;349(2):289–294. doi: 10.1016/0014-5793(94)00690-3. [DOI] [PubMed] [Google Scholar]
  166. Somasundaram B., Mahaut-Smith M. P. A novel monovalent cation channel activated by inositol trisphosphate in the plasma membrane of rat megakaryocytes. J Biol Chem. 1995 Jul 14;270(28):16638–16644. doi: 10.1074/jbc.270.28.16638. [DOI] [PubMed] [Google Scholar]
  167. Somasundaram B., Norman J. C., Mahaut-Smith M. P. Primaquine, an inhibitor of vesicular transport, blocks the calcium-release-activated current in rat megakaryocytes. Biochem J. 1995 Aug 1;309(Pt 3):725–729. doi: 10.1042/bj3090725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Stanley E. F. The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci. 1997 Sep;20(9):404–409. doi: 10.1016/s0166-2236(97)01091-6. [DOI] [PubMed] [Google Scholar]
  169. Subramanian K., Meyer T. Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell. 1997 Jun 13;89(6):963–971. doi: 10.1016/s0092-8674(00)80281-0. [DOI] [PubMed] [Google Scholar]
  170. Sugawara H., Kurosaki M., Takata M., Kurosaki T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 1997 Jun 2;16(11):3078–3088. doi: 10.1093/emboj/16.11.3078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Tepel M., Kühnapfel S., Theilmeier G., Teupe C., Schlotmann R., Zidek W. Filling state of intracellular Ca2+ pools triggers trans plasma membrane Na+ and Ca2+ influx by a tyrosine kinase-dependent pathway. J Biol Chem. 1994 Oct 21;269(42):26239–26242. [PubMed] [Google Scholar]
  172. Tepikin A. V., Voronina S. G., Gallacher D. V., Petersen O. H. Pulsatile Ca2+ extrusion from single pancreatic acinar cells during receptor-activated cytosolic Ca2+ spiking. J Biol Chem. 1992 Jul 15;267(20):14073–14076. [PubMed] [Google Scholar]
  173. Thomas A. P., Bird G. S., Hajnóczky G., Robb-Gaspers L. D., Putney J. W., Jr Spatial and temporal aspects of cellular calcium signaling. FASEB J. 1996 Nov;10(13):1505–1517. [PubMed] [Google Scholar]
  174. Tomita Y., Kaneko S., Funayama M., Kondo H., Satoh M., Akaike A. Intracellular Ca2+ store-operated influx of Ca2+ through TRP-R, a rat homolog of TRP, expressed in Xenopus oocytes. Neurosci Lett. 1998 Jun 5;248(3):195–198. doi: 10.1016/s0304-3940(98)00362-0. [DOI] [PubMed] [Google Scholar]
  175. Tomić M., Jobin R. M., Vergara L. A., Stojilkovic S. S. Expression of purinergic receptor channels and their role in calcium signaling and hormone release in pituitary gonadotrophs. Integration of P2 channels in plasma membrane- and endoplasmic reticulum-derived calcium oscillations. J Biol Chem. 1996 Aug 30;271(35):21200–21208. doi: 10.1074/jbc.271.35.21200. [DOI] [PubMed] [Google Scholar]
  176. Vaca L., Kunze D. L. IP3-activated Ca2+ channels in the plasma membrane of cultured vascular endothelial cells. Am J Physiol. 1995 Sep;269(3 Pt 1):C733–C738. doi: 10.1152/ajpcell.1995.269.3.C733. [DOI] [PubMed] [Google Scholar]
  177. Verheugen J. A., Korn H. A charybdotoxin-insensitive conductance in human T lymphocytes: T cell membrane potential is set by distinct K+ channels. J Physiol. 1997 Sep 1;503(Pt 2):317–331. doi: 10.1111/j.1469-7793.1997.317bh.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Wang X., van Breemen C. Multiple mechanisms of activating Ca2+ entry in freshly isolated rabbit aortic endothelial cells. J Vasc Res. 1997 May-Jun;34(3):196–207. doi: 10.1159/000159223. [DOI] [PubMed] [Google Scholar]
  179. Warr C. G., Kelly L. E. Identification and characterization of two distinct calmodulin-binding sites in the Trpl ion-channel protein of Drosophila melanogaster. Biochem J. 1996 Mar 1;314(Pt 2):497–503. doi: 10.1042/bj3140497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Wayman C. P., Gibson A., McFadzean I. Depletion of either ryanodine- or IP3-sensitive calcium stores activates capacitative calcium entry in mouse anococcygeus smooth muscle cells. Pflugers Arch. 1998 Jan;435(2):231–239. doi: 10.1007/s004240050506. [DOI] [PubMed] [Google Scholar]
  181. Willmott N. J., Asselin J., Galione A. Calcium store depletion potentiates a phosphodiesterase inhibitor- and dibutyryl cGMP-evoked calcium influx in rat pituitary GH3 cells. FEBS Lett. 1996 May 13;386(1):39–42. doi: 10.1016/0014-5793(96)00413-9. [DOI] [PubMed] [Google Scholar]
  182. Willmott N. J., Choudhury Q., Flower R. J. Functional importance of the dihydropyridine-sensitive, yet voltage-insensitive store-operated Ca2+ influx of U937 cells. FEBS Lett. 1996 Sep 30;394(2):159–164. doi: 10.1016/0014-5793(96)00939-8. [DOI] [PubMed] [Google Scholar]
  183. Wissenbach U., Schroth G., Philipp S., Flockerzi V. Structure and mRNA expression of a bovine trp homologue related to mammalian trp2 transcripts. FEBS Lett. 1998 Jun 5;429(1):61–66. doi: 10.1016/s0014-5793(98)00561-4. [DOI] [PubMed] [Google Scholar]
  184. Wolf M. J., Wang J., Turk J., Gross R. W. Depletion of intracellular calcium stores activates smooth muscle cell calcium-independent phospholipase A2. A novel mechanism underlying arachidonic acid mobilization. J Biol Chem. 1997 Jan 17;272(3):1522–1526. doi: 10.1074/jbc.272.3.1522. [DOI] [PubMed] [Google Scholar]
  185. Wong F., Schaefer E. L., Roop B. C., LaMendola J. N., Johnson-Seaton D., Shao D. Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron. 1989 Jul;3(1):81–94. doi: 10.1016/0896-6273(89)90117-7. [DOI] [PubMed] [Google Scholar]
  186. Yao Y., Tsien R. Y. Calcium current activated by depletion of calcium stores in Xenopus oocytes. J Gen Physiol. 1997 Jun;109(6):703–715. doi: 10.1085/jgp.109.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Zagotta W. N., Siegelbaum S. A. Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci. 1996;19:235–263. doi: 10.1146/annurev.ne.19.030196.001315. [DOI] [PubMed] [Google Scholar]
  188. Zhu X., Jiang M., Birnbaumer L. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem. 1998 Jan 2;273(1):133–142. doi: 10.1074/jbc.273.1.133. [DOI] [PubMed] [Google Scholar]
  189. Zhu X., Jiang M., Peyton M., Boulay G., Hurst R., Stefani E., Birnbaumer L. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell. 1996 May 31;85(5):661–671. doi: 10.1016/s0092-8674(00)81233-7. [DOI] [PubMed] [Google Scholar]
  190. Zimmermann B. Calcium store depletion activates two distinct calcium entry pathways in secretory cells of the blowfly salivary gland. Cell Calcium. 1998 Jan;23(1):53–63. doi: 10.1016/s0143-4160(98)90074-4. [DOI] [PubMed] [Google Scholar]
  191. Zitt C., Obukhov A. G., Strübing C., Zobel A., Kalkbrenner F., Lückhoff A., Schultz G. Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. J Cell Biol. 1997 Sep 22;138(6):1333–1341. doi: 10.1083/jcb.138.6.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Zitt C., Zobel A., Obukhov A. G., Harteneck C., Kalkbrenner F., Lückhoff A., Schultz G. Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron. 1996 Jun;16(6):1189–1196. doi: 10.1016/s0896-6273(00)80145-2. [DOI] [PubMed] [Google Scholar]
  193. Zweifach A., Lewis R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6295–6299. doi: 10.1073/pnas.90.13.6295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. van Breemen C., Chen Q., Laher I. Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol Sci. 1995 Mar;16(3):98–105. doi: 10.1016/s0165-6147(00)88990-7. [DOI] [PubMed] [Google Scholar]
  195. von Tscharner V., Prod'hom B., Baggiolini M., Reuter H. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. 1986 Nov 27-Dec 3Nature. 324(6095):369–372. doi: 10.1038/324369a0. [DOI] [PubMed] [Google Scholar]
  196. von zur Mühlen F., Eckstein F., Penner R. Guanosine 5'-[beta-thio]triphosphate selectively activates calcium signaling in mast cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):926–930. doi: 10.1073/pnas.88.3.926. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES