Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jan 15;337(Pt 2):219–223.

[Difluro(phosphono)methyl]phenylalanine-containing peptide inhibitors of protein tyrosine phosphatases.

S Desmarais 1, R W Friesen 1, R Zamboni 1, C Ramachandran 1
PMCID: PMC1219955  PMID: 9882618

Abstract

Peptides containing the non-hydrolysable phosphotyrosine analogue 4-[difluro(phosphono)methyl]phenylalanine [Phe(CF2P)] were synthesized and tested as inhibitors of the protein tyrosine phosphatases (PTPs) PTP1B, CD45, PTPbeta, LAR and SHP-1. We have identified peptides containing two adjacent Phe(CF2P) residues as potent inhibitors of PTPs. The tripeptide having the sequence Glu-Phe(CF2P)-Phe(CF2P) is a potent and selective inhibitor of PTP1B. This peptide inhibits PTP1B with an IC50 of 40 nM, which is at least 100-fold lower than with other PTPs. A second tripeptide, Pro-Phe(CF2P)-Phe(CF2P), is most potent against PTPbeta, with an IC50 of 200 nM, and inhibits PTP1B with an IC50 of 300 nM. These data suggest that it is possible to develop selective, active-site-directed, reversible, potent inhibitors of PTPs.

Full Text

The Full Text of this article is available as a PDF (100.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burke T. R., Jr, Kole H. K., Roller P. P. Potent inhibition of insulin receptor dephosphorylation by a hexamer peptide containing the phosphotyrosyl mimetic F2Pmp. Biochem Biophys Res Commun. 1994 Oct 14;204(1):129–134. doi: 10.1006/bbrc.1994.2435. [DOI] [PubMed] [Google Scholar]
  2. Burke T. R., Jr, Ye B., Akamatsu M., Ford H., Jr, Yan X., Kole H. K., Wolf G., Shoelson S. E., Roller P. P. 4'-O-[2-(2-fluoromalonyl)]-L-tyrosine: a phosphotyrosyl mimic for the preparation of signal transduction inhibitory peptides. J Med Chem. 1996 Mar 1;39(5):1021–1027. doi: 10.1021/jm950621g. [DOI] [PubMed] [Google Scholar]
  3. Burke T. R., Jr, Ye B., Yan X., Wang S., Jia Z., Chen L., Zhang Z. Y., Barford D. Small molecule interactions with protein-tyrosine phosphatase PTP1B and their use in inhibitor design. Biochemistry. 1996 Dec 17;35(50):15989–15996. doi: 10.1021/bi961256d. [DOI] [PubMed] [Google Scholar]
  4. Byth K. F., Conroy L. A., Howlett S., Smith A. J., May J., Alexander D. R., Holmes N. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J Exp Med. 1996 Apr 1;183(4):1707–1718. doi: 10.1084/jem.183.4.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caplan N. A., Pogson C. I., Hayes D. J., Blackburn G. M. Novel bisphosphonate inhibitors of phosphoglycerate kinase. Bioorg Med Chem Lett. 1998 Mar 3;8(5):515–520. doi: 10.1016/s0960-894x(98)00059-6. [DOI] [PubMed] [Google Scholar]
  6. Chen L., Wu L., Otaka A., Smyth M. S., Roller P. P., Burke T. R., Jr, den Hertog J., Zhang Z. Y. Why is phosphonodifluoromethyl phenylalanine a more potent inhibitory moiety than phosphonomethyl phenylalanine toward protein-tyrosine phosphatases? Biochem Biophys Res Commun. 1995 Nov 22;216(3):976–984. doi: 10.1006/bbrc.1995.2716. [DOI] [PubMed] [Google Scholar]
  7. Cho H., Krishnaraj R., Itoh M., Kitas E., Bannwarth W., Saito H., Walsh C. T. Substrate specificities of catalytic fragments of protein tyrosine phosphatases (HPTP beta, LAR, and CD45) toward phosphotyrosylpeptide substrates and thiophosphotyrosylated peptides as inhibitors. Protein Sci. 1993 Jun;2(6):977–984. doi: 10.1002/pro.5560020611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cho H., Ramer S. E., Itoh M., Kitas E., Bannwarth W., Burn P., Saito H., Walsh C. T. Catalytic domains of the LAR and CD45 protein tyrosine phosphatases from Escherichia coli expression systems: purification and characterization for specificity and mechanism. Biochemistry. 1992 Jan 14;31(1):133–138. doi: 10.1021/bi00116a019. [DOI] [PubMed] [Google Scholar]
  9. Denu J. M., Stuckey J. A., Saper M. A., Dixon J. E. Form and function in protein dephosphorylation. Cell. 1996 Nov 1;87(3):361–364. doi: 10.1016/s0092-8674(00)81356-2. [DOI] [PubMed] [Google Scholar]
  10. Dixon J. E. Protein tyrosine phosphatases: their roles in signal transduction. Recent Prog Horm Res. 1996;51:405–415. [PubMed] [Google Scholar]
  11. Gilmer T., Rodriguez M., Jordan S., Crosby R., Alligood K., Green M., Kimery M., Wagner C., Kinder D., Charifson P. Peptide inhibitors of src SH3-SH2-phosphoprotein interactions. J Biol Chem. 1994 Dec 16;269(50):31711–31719. [PubMed] [Google Scholar]
  12. Harder K. W., Owen P., Wong L. K., Aebersold R., Clark-Lewis I., Jirik F. R. Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) using synthetic phosphopeptides. Biochem J. 1994 Mar 1;298(Pt 2):395–401. doi: 10.1042/bj2980395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hippen K. L., Jakes S., Richards J., Jena B. P., Beck B. L., Tabatabai L. B., Ingebritsen T. S. Acidic residues are involved in substrate recognition by two soluble protein tyrosine phosphatases, PTP-5 and rrbPTP-1. Biochemistry. 1993 Nov 23;32(46):12405–12412. doi: 10.1021/bi00097a019. [DOI] [PubMed] [Google Scholar]
  14. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
  15. Huyer G., Kelly J., Moffat J., Zamboni R., Jia Z., Gresser M. J., Ramachandran C. Affinity selection from peptide libraries to determine substrate specificity of protein tyrosine phosphatases. Anal Biochem. 1998 Apr 10;258(1):19–30. doi: 10.1006/abio.1997.2541. [DOI] [PubMed] [Google Scholar]
  16. Huyer G., Li Z. M., Adam M., Huckle W. R., Ramachandran C. Direct determination of the sequence recognition requirements of the SH2 domains of SH-PTP2. Biochemistry. 1995 Jan 24;34(3):1040–1049. doi: 10.1021/bi00003a039. [DOI] [PubMed] [Google Scholar]
  17. Huyer G., Liu S., Kelly J., Moffat J., Payette P., Kennedy B., Tsaprailis G., Gresser M. J., Ramachandran C. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem. 1997 Jan 10;272(2):843–851. doi: 10.1074/jbc.272.2.843. [DOI] [PubMed] [Google Scholar]
  18. Kishihara K., Penninger J., Wallace V. A., Kündig T. M., Kawai K., Wakeham A., Timms E., Pfeffer K., Ohashi P. S., Thomas M. L. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell. 1993 Jul 16;74(1):143–156. doi: 10.1016/0092-8674(93)90302-7. [DOI] [PubMed] [Google Scholar]
  19. Kole H. K., Akamatsu M., Ye B., Yan X., Barford D., Roller P. P., Burke T. R., Jr Protein-tyrosine phosphatase inhibition by a peptide containing the phosphotyrosyl mimetic, L-O-malonyltyrosine. Biochem Biophys Res Commun. 1995 Apr 26;209(3):817–822. doi: 10.1006/bbrc.1995.1573. [DOI] [PubMed] [Google Scholar]
  20. Koretzky G. A., Picus J., Thomas M. L., Weiss A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature. 1990 Jul 5;346(6279):66–68. doi: 10.1038/346066a0. [DOI] [PubMed] [Google Scholar]
  21. Liotta A. S., Kole H. K., Fales H. M., Roth J., Bernier M. A synthetic tris-sulfotyrosyl dodecapeptide analogue of the insulin receptor 1146-kinase domain inhibits tyrosine dephosphorylation of the insulin receptor in situ. J Biol Chem. 1994 Sep 16;269(37):22996–23001. [PubMed] [Google Scholar]
  22. Møller N. P., Møller K. B., Lammers R., Kharitonenkov A., Hoppe E., Wiberg F. C., Sures I., Ullrich A. Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases alpha and epsilon. J Biol Chem. 1995 Sep 29;270(39):23126–23131. doi: 10.1074/jbc.270.39.23126. [DOI] [PubMed] [Google Scholar]
  23. Neel B. G., Tonks N. K. Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol. 1997 Apr;9(2):193–204. doi: 10.1016/s0955-0674(97)80063-4. [DOI] [PubMed] [Google Scholar]
  24. Pot D. A., Woodford T. A., Remboutsika E., Haun R. S., Dixon J. E. Cloning, bacterial expression, purification, and characterization of the cytoplasmic domain of rat LAR, a receptor-like protein tyrosine phosphatase. J Biol Chem. 1991 Oct 15;266(29):19688–19696. [PubMed] [Google Scholar]
  25. Puius Y. A., Zhao Y., Sullivan M., Lawrence D. S., Almo S. C., Zhang Z. Y. Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13420–13425. doi: 10.1073/pnas.94.25.13420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schaapveld R. Q., Schepens J. T., Robinson G. W., Attema J., Oerlemans F. T., Fransen J. A., Streuli M., Wieringa B., Hennighausen L., Hendriks W. J. Impaired mammary gland development and function in mice lacking LAR receptor-like tyrosine phosphatase activity. Dev Biol. 1997 Aug 1;188(1):134–146. doi: 10.1006/dbio.1997.8630. [DOI] [PubMed] [Google Scholar]
  27. Streuli M. Protein tyrosine phosphatases in signaling. Curr Opin Cell Biol. 1996 Apr;8(2):182–188. doi: 10.1016/s0955-0674(96)80064-0. [DOI] [PubMed] [Google Scholar]
  28. Tonks N. K., Neel B. G. From form to function: signaling by protein tyrosine phosphatases. Cell. 1996 Nov 1;87(3):365–368. doi: 10.1016/s0092-8674(00)81357-4. [DOI] [PubMed] [Google Scholar]
  29. Tonks N. K. Protein tyrosine phosphatases and the control of cellular signaling responses. Adv Pharmacol. 1996;36:91–119. doi: 10.1016/s1054-3589(08)60578-5. [DOI] [PubMed] [Google Scholar]
  30. Townley R., Shen S. H., Banville D., Ramachandran C. Inhibition of the activity of protein tyrosine phosphate 1C by its SH2 domains. Biochemistry. 1993 Dec 14;32(49):13414–13418. doi: 10.1021/bi00212a006. [DOI] [PubMed] [Google Scholar]
  31. Wu L., Buist A., den Hertog J., Zhang Z. Y. Comparative kinetic analysis and substrate specificity of the tandem catalytic domains of the receptor-like protein-tyrosine phosphatase alpha. J Biol Chem. 1997 Mar 14;272(11):6994–7002. doi: 10.1074/jbc.272.11.6994. [DOI] [PubMed] [Google Scholar]
  32. You-Ten K. E., Muise E. S., Itié A., Michaliszyn E., Wagner J., Jothy S., Lapp W. S., Tremblay M. L. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J Exp Med. 1997 Aug 29;186(5):683–693. doi: 10.1084/jem.186.5.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zhang Z. Y., Maclean D., McNamara D. J., Sawyer T. K., Dixon J. E. Protein tyrosine phosphatase substrate specificity: size and phosphotyrosine positioning requirements in peptide substrates. Biochemistry. 1994 Mar 1;33(8):2285–2290. doi: 10.1021/bi00174a040. [DOI] [PubMed] [Google Scholar]
  34. Zhang Z. Y., Thieme-Sefler A. M., Maclean D., McNamara D. J., Dobrusin E. M., Sawyer T. K., Dixon J. E. Substrate specificity of the protein tyrosine phosphatases. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4446–4450. doi: 10.1073/pnas.90.10.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES