Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 1;337(Pt 3):345–361.

Protein-protein interactions in intracellular Ca2+-release channel function.

J J MacKrill 1
PMCID: PMC1219985  PMID: 9895277

Abstract

Release of Ca2+ ions from intracellular stores can occur via two classes of Ca2+-release channel (CRC) protein, the inositol 1,4, 5-trisphosphate receptors (InsP3Rs) and the ryanodine receptors (RyRs). Multiple isoforms and subtypes of each CRC class display distinct but overlapping distributions within mammalian tissues. InsP3Rs and RyRs interact with a plethora of accessory proteins which modulate the activity of their intrinsic channels. Although many aspects of CRC structure and function have been reviewed in recent years, the properties of proteins with which they interact has not been comprehensively surveyed, despite extensive current research on the roles of these modulators. The aim of this article is to review the regulation of CRC activity by accessory proteins and, wherever possible, to outline the structural details of such interactions. The CRCs are large transmembrane proteins, with the bulk of their structure located cytoplasmically. Intra- and inter-complex protein-protein interactions between these cytoplasmic domains also regulate CRC function. Some accessory proteins modulate channel activity of all CRC subtypes characterized, whereas other have class- or even isoform-specific effects. Certain accessory proteins exert both direct and indirect forms of regulation on CRCs, occasionally with opposing effects. Others are themselves modulated by changes in Ca2+ concentration, thereby participating in feedback mechanisms acting on InsP3R and RyR activity. CRCs are therefore capable of integrating numerous signalling events within a cell by virtue of such protein-protein interactions. Consequently, the functional properties of InsP3Rs and RyRs within particular cells and subcellular domains are 'customized' by the accessory proteins present.

Full Text

The Full Text of this article is available as a PDF (283.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B. A., Tanabe T., Mikami A., Numa S., Beam K. G. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature. 1990 Aug 9;346(6284):569–572. doi: 10.1038/346569a0. [DOI] [PubMed] [Google Scholar]
  2. Aghdasi B., Reid M. B., Hamilton S. L. Nitric oxide protects the skeletal muscle Ca2+ release channel from oxidation induced activation. J Biol Chem. 1997 Oct 10;272(41):25462–25467. doi: 10.1074/jbc.272.41.25462. [DOI] [PubMed] [Google Scholar]
  3. Aghdasi B., Zhang J. Z., Wu Y., Reid M. B., Hamilton S. L. Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel. J Biol Chem. 1997 Feb 7;272(6):3739–3748. doi: 10.1074/jbc.272.6.3739. [DOI] [PubMed] [Google Scholar]
  4. Barg S., Copello J. A., Fleischer S. Different interactions of cardiac and skeletal muscle ryanodine receptors with FK-506 binding protein isoforms. Am J Physiol. 1997 May;272(5 Pt 1):C1726–C1733. doi: 10.1152/ajpcell.1997.272.5.C1726. [DOI] [PubMed] [Google Scholar]
  5. Barnes J. A., Gomes A. V. PEST sequences in calmodulin-binding proteins. Mol Cell Biochem. 1995 Aug-Sep;149-150:17–27. doi: 10.1007/BF01076559. [DOI] [PubMed] [Google Scholar]
  6. Bastianutto C., Clementi E., Codazzi F., Podini P., De Giorgi F., Rizzuto R., Meldolesi J., Pozzan T. Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J Cell Biol. 1995 Aug;130(4):847–855. doi: 10.1083/jcb.130.4.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bayer K. U., Harbers K., Schulman H. alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J. 1998 Oct 1;17(19):5598–5605. doi: 10.1093/emboj/17.19.5598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beam K. G., Tanabe T., Numa S. Structure, function, and regulation of the skeletal muscle dihydropyridine receptor. Ann N Y Acad Sci. 1989;560:127–137. doi: 10.1111/j.1749-6632.1989.tb24090.x. [DOI] [PubMed] [Google Scholar]
  9. Bennett D. L., Cheek T. R., Berridge M. J., De Smedt H., Parys J. B., Missiaen L., Bootman M. D. Expression and function of ryanodine receptors in nonexcitable cells. J Biol Chem. 1996 Mar 15;271(11):6356–6362. doi: 10.1074/jbc.271.11.6356. [DOI] [PubMed] [Google Scholar]
  10. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  11. Berridge M. J. Microdomains and elemental events in calcium signalling. Cell Calcium. 1996 Aug;20(2):95–96. doi: 10.1016/s0143-4160(96)90098-6. [DOI] [PubMed] [Google Scholar]
  12. Berridge M. J. The AM and FM of calcium signalling. Nature. 1997 Apr 24;386(6627):759–760. doi: 10.1038/386759a0. [DOI] [PubMed] [Google Scholar]
  13. Bhat M. B., Zhao J., Takeshima H., Ma J. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor. Biophys J. 1997 Sep;73(3):1329–1336. doi: 10.1016/S0006-3495(97)78166-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bhat M. B., Zhao J., Zang W., Balke C. W., Takeshima H., Wier W. G., Ma J. Caffeine-induced release of intracellular Ca2+ from Chinese hamster ovary cells expressing skeletal muscle ryanodine receptor. Effects on full-length and carboxyl-terminal portion of Ca2+ release channels. J Gen Physiol. 1997 Dec;110(6):749–762. doi: 10.1085/jgp.110.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bird G. S., Putney J. W., Jr Effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-activated Ca2+ signaling in mouse lacrimal acinar cells. J Biol Chem. 1996 Mar 22;271(12):6766–6770. doi: 10.1074/jbc.271.12.6766. [DOI] [PubMed] [Google Scholar]
  16. Bokkala S., Joseph S. K. Angiotensin II-induced down-regulation of inositol trisphosphate receptors in WB rat liver epithelial cells. Evidence for involvement of the proteasome pathway. J Biol Chem. 1997 May 9;272(19):12454–12461. doi: 10.1074/jbc.272.19.12454. [DOI] [PubMed] [Google Scholar]
  17. Bonev A. D., Jaggar J. H., Rubart M., Nelson M. T. Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries. Am J Physiol. 1997 Dec;273(6 Pt 1):C2090–C2095. doi: 10.1152/ajpcell.1997.273.6.C2090. [DOI] [PubMed] [Google Scholar]
  18. Bourguignon L. Y., Chu A., Jin H., Brandt N. R. Ryanodine receptor-ankyrin interaction regulates internal Ca2+ release in mouse T-lymphoma cells. J Biol Chem. 1995 Jul 28;270(30):17917–17922. doi: 10.1074/jbc.270.30.17917. [DOI] [PubMed] [Google Scholar]
  19. Bourguignon L. Y., Jin H. Identification of the ankyrin-binding domain of the mouse T-lymphoma cell inositol 1,4,5-trisphosphate (IP3) receptor and its role in the regulation of IP3-mediated internal Ca2+ release. J Biol Chem. 1995 Mar 31;270(13):7257–7260. doi: 10.1074/jbc.270.13.7257. [DOI] [PubMed] [Google Scholar]
  20. Bourguignon L. Y., Jin H., Iida N., Brandt N. R., Zhang S. H. The involvement of ankyrin in the regulation of inositol 1,4,5-trisphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells. J Biol Chem. 1993 Apr 5;268(10):7290–7297. [PubMed] [Google Scholar]
  21. Brandt N. R., Caswell A. H., Brandt T., Brew K., Mellgren R. L. Mapping of the calpain proteolysis products of the junctional foot protein of the skeletal muscle triad junction. J Membr Biol. 1992 Apr;127(1):35–47. doi: 10.1007/BF00232756. [DOI] [PubMed] [Google Scholar]
  22. Brandt N. R., Caswell A. H., Brunschwig J. P., Kang J. J., Antoniu B., Ikemoto N. Effects of anti-triadin antibody on Ca2+ release from sarcoplasmic reticulum. FEBS Lett. 1992 Mar 24;299(1):57–59. doi: 10.1016/0014-5793(92)80100-u. [DOI] [PubMed] [Google Scholar]
  23. Brandt N. R., Caswell A. H., Carl S. A., Ferguson D. G., Brandt T., Brunschwig J. P., Bassett A. L. Detection and localization of triadin in rat ventricular muscle. J Membr Biol. 1993 Feb;131(3):219–228. doi: 10.1007/BF02260110. [DOI] [PubMed] [Google Scholar]
  24. Brandt N. R., Caswell A. H., Wen S. R., Talvenheimo J. A. Molecular interactions of the junctional foot protein and dihydropyridine receptor in skeletal muscle triads. J Membr Biol. 1990 Feb;113(3):237–251. doi: 10.1007/BF01870075. [DOI] [PubMed] [Google Scholar]
  25. Brillantes A. B., Ondrias K., Scott A., Kobrinsky E., Ondriasová E., Moschella M. C., Jayaraman T., Landers M., Ehrlich B. E., Marks A. R. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell. 1994 May 20;77(4):513–523. doi: 10.1016/0092-8674(94)90214-3. [DOI] [PubMed] [Google Scholar]
  26. Buck E. D., Nguyen H. T., Pessah I. N., Allen P. D. Dyspedic mouse skeletal muscle expresses major elements of the triadic junction but lacks detectable ryanodine receptor protein and function. J Biol Chem. 1997 Mar 14;272(11):7360–7367. doi: 10.1074/jbc.272.11.7360. [DOI] [PubMed] [Google Scholar]
  27. Buratti R., Prestipino G., Menegazzi P., Treves S., Zorzato F. Calcium dependent activation of skeletal muscle Ca2+ release channel (ryanodine receptor) by calmodulin. Biochem Biophys Res Commun. 1995 Aug 24;213(3):1082–1090. doi: 10.1006/bbrc.1995.2238. [DOI] [PubMed] [Google Scholar]
  28. Burns K., Michalak M. Interactions of calreticulin with proteins of the endoplasmic and sarcoplasmic reticulum membranes. FEBS Lett. 1993 Mar 1;318(2):181–185. doi: 10.1016/0014-5793(93)80017-o. [DOI] [PubMed] [Google Scholar]
  29. Callaway C., Seryshev A., Wang J. P., Slavik K. J., Needleman D. H., Cantu C., 3rd, Wu Y., Jayaraman T., Marks A. R., Hamilton S. L. Localization of the high and low affinity [3H]ryanodine binding sites on the skeletal muscle Ca2+ release channel. J Biol Chem. 1994 Jun 3;269(22):15876–15884. [PubMed] [Google Scholar]
  30. Camacho P., Lechleiter J. D. Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell. 1995 Sep 8;82(5):765–771. doi: 10.1016/0092-8674(95)90473-5. [DOI] [PubMed] [Google Scholar]
  31. Cameron A. M., Nucifora F. C., Jr, Fung E. T., Livingston D. J., Aldape R. A., Ross C. A., Snyder S. H. FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400-1401) and anchors calcineurin to this FK506-like domain. J Biol Chem. 1997 Oct 31;272(44):27582–27588. doi: 10.1074/jbc.272.44.27582. [DOI] [PubMed] [Google Scholar]
  32. Cameron A. M., Steiner J. P., Roskams A. J., Ali S. M., Ronnett G. V., Snyder S. H. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell. 1995 Nov 3;83(3):463–472. doi: 10.1016/0092-8674(95)90124-8. [DOI] [PubMed] [Google Scholar]
  33. Cardy T. J., Taylor C. W. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors. Biochem J. 1998 Sep 1;334(Pt 2):447–455. doi: 10.1042/bj3340447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Carl S. L., Felix K., Caswell A. H., Brandt N. R., Ball W. J., Jr, Vaghy P. L., Meissner G., Ferguson D. G. Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol. 1995 May;129(3):673–682. doi: 10.1083/jcb.129.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Caswell A. H., Brandt N. R., Brunschwig J. P., Purkerson S. Localization and partial characterization of the oligomeric disulfide-linked molecular weight 95,000 protein (triadin) which binds the ryanodine and dihydropyridine receptors in skeletal muscle triadic vesicles. Biochemistry. 1991 Jul 30;30(30):7507–7513. doi: 10.1021/bi00244a020. [DOI] [PubMed] [Google Scholar]
  36. Cavallini L., Coassin M., Borean A., Alexandre A. Prostacyclin and sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation. J Biol Chem. 1996 Mar 8;271(10):5545–5551. doi: 10.1074/jbc.271.10.5545. [DOI] [PubMed] [Google Scholar]
  37. Chavis P., Fagni L., Lansman J. B., Bockaert J. Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature. 1996 Aug 22;382(6593):719–722. doi: 10.1038/382719a0. [DOI] [PubMed] [Google Scholar]
  38. Chen S. R., Ebisawa K., Li X., Zhang L. Molecular identification of the ryanodine receptor Ca2+ sensor. J Biol Chem. 1998 Jun 12;273(24):14675–14678. doi: 10.1074/jbc.273.24.14675. [DOI] [PubMed] [Google Scholar]
  39. Chen S. R., MacLennan D. H. Identification of calmodulin-, Ca(2+)-, and ruthenium red-binding domains in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1994 Sep 9;269(36):22698–22704. [PubMed] [Google Scholar]
  40. Chen S. R., Zhang L., MacLennan D. H. Asymmetrical blockade of the Ca2+ release channel (ryanodine receptor) by 12-kDa FK506 binding protein. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11953–11957. doi: 10.1073/pnas.91.25.11953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Chu A., Sumbilla C., Inesi G., Jay S. D., Campbell K. P. Specific association of calmodulin-dependent protein kinase and related substrates with the junctional sarcoplasmic reticulum of skeletal muscle. Biochemistry. 1990 Jun 26;29(25):5899–5905. doi: 10.1021/bi00477a003. [DOI] [PubMed] [Google Scholar]
  42. Collins J. H. Sequence analysis of the ryanodine receptor: possible association with a 12K, FK506-binding immunophilin/protein kinase C inhibitor. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1288–1290. doi: 10.1016/0006-291x(91)91033-9. [DOI] [PubMed] [Google Scholar]
  43. Coppolino M. G., Woodside M. J., Demaurex N., Grinstein S., St-Arnaud R., Dedhar S. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature. 1997 Apr 24;386(6627):843–847. doi: 10.1038/386843a0. [DOI] [PubMed] [Google Scholar]
  44. Cornwell T. L., Pryzwansky K. B., Wyatt T. A., Lincoln T. M. Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol. 1991 Dec;40(6):923–931. [PubMed] [Google Scholar]
  45. Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
  46. Creutz C. E. The annexins and exocytosis. Science. 1992 Nov 6;258(5084):924–931. doi: 10.1126/science.1439804. [DOI] [PubMed] [Google Scholar]
  47. Damiani E., Picello E., Saggin L., Margreth A. Identification of triadin and of histidine-rich Ca(2+)-binding protein as substrates of 60 kDa calmodulin-dependent protein kinase in junctional terminal cisternae of sarcoplasmic reticulum of rabbit fast muscle. Biochem Biophys Res Commun. 1995 Apr 17;209(2):457–465. doi: 10.1006/bbrc.1995.1524. [DOI] [PubMed] [Google Scholar]
  48. Danoff S. K., Supattapone S., Snyder S. H. Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem J. 1988 Sep 15;254(3):701–705. doi: 10.1042/bj2540701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. De Jongh K. S., Colvin A. A., Wang K. K., Catterall W. A. Differential proteolysis of the full-length form of the L-type calcium channel alpha 1 subunit by calpain. J Neurochem. 1994 Oct;63(4):1558–1564. doi: 10.1046/j.1471-4159.1994.63041558.x. [DOI] [PubMed] [Google Scholar]
  50. Dekker L. V., Parker P. J. Protein kinase C--a question of specificity. Trends Biochem Sci. 1994 Feb;19(2):73–77. doi: 10.1016/0968-0004(94)90038-8. [DOI] [PubMed] [Google Scholar]
  51. Dell'Acqua M. L., Scott J. D. Protein kinase A anchoring. J Biol Chem. 1997 May 16;272(20):12881–12884. doi: 10.1074/jbc.272.20.12881. [DOI] [PubMed] [Google Scholar]
  52. Díaz-Muñoz M., Hamilton S. L., Kaetzel M. A., Hazarika P., Dedman J. R. Modulation of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcimedin). J Biol Chem. 1990 Sep 15;265(26):15894–15899. [PubMed] [Google Scholar]
  53. Ehrlich B. E. Functional properties of intracellular calcium-release channels. Curr Opin Neurobiol. 1995 Jun;5(3):304–309. doi: 10.1016/0959-4388(95)80042-5. [DOI] [PubMed] [Google Scholar]
  54. El-Hayek R., Ikemoto N. Identification of the minimum essential region in the II-III loop of the dihydropyridine receptor alpha 1 subunit required for activation of skeletal muscle-type excitation-contraction coupling. Biochemistry. 1998 May 12;37(19):7015–7020. doi: 10.1021/bi972907o. [DOI] [PubMed] [Google Scholar]
  55. Fadool D. A., Ache B. W. Inositol 1,3,4,5-tetrakisphosphate-gated channels interact with inositol 1,4,5-trisphosphate-gated channels in olfactory receptor neurons. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9471–9475. doi: 10.1073/pnas.91.20.9471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Fan H., Brandt N. R., Caswell A. H. Disulfide bonds, N-glycosylation and transmembrane topology of skeletal muscle triadin. Biochemistry. 1995 Nov 14;34(45):14902–14908. doi: 10.1021/bi00045a035. [DOI] [PubMed] [Google Scholar]
  57. Fan H., Brandt N. R., Peng M., Schwartz A., Caswell A. H. Binding sites of monoclonal antibodies and dihydropyridine receptor alpha 1 subunit cytoplasmic II-III loop on skeletal muscle triadin fusion peptides. Biochemistry. 1995 Nov 14;34(45):14893–14901. doi: 10.1021/bi00045a034. [DOI] [PubMed] [Google Scholar]
  58. Feng L., Kraus-Friedmann N. Association of the hepatic IP3 receptor with the plasma membrane: relevance to mode of action. Am J Physiol. 1993 Dec;265(6 Pt 1):C1588–C1596. doi: 10.1152/ajpcell.1993.265.6.C1588. [DOI] [PubMed] [Google Scholar]
  59. Ferris C. D., Cameron A. M., Bredt D. S., Huganir R. L., Snyder S. H. Autophosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem. 1992 Apr 5;267(10):7036–7041. [PubMed] [Google Scholar]
  60. Ferris C. D., Huganir R. L., Bredt D. S., Cameron A. M., Snyder S. H. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2232–2235. doi: 10.1073/pnas.88.6.2232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Fill M., Mejia-Alvarez R., Zorzato F., Volpe P., Stefani E. Antibodies as probes for ligand gating of single sarcoplasmic reticulum Ca2(+)-release channels. Biochem J. 1991 Jan 15;273(Pt 2):449–457. doi: 10.1042/bj2730449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Froemming G. R., Ohlendieck K. Oligomerisation of Ca2+-regulatory membrane components involved in the excitation-contraction-relaxation cycle during postnatal development of rabbit skeletal muscle. Biochim Biophys Acta. 1998 Sep 8;1387(1-2):226–238. doi: 10.1016/s0167-4838(98)00126-5. [DOI] [PubMed] [Google Scholar]
  63. Fuentes O., Valdivia C., Vaughan D., Coronado R., Valdivia H. H. Calcium-dependent block of ryanodine receptor channel of swine skeletal muscle by direct binding of calmodulin. Cell Calcium. 1994 Apr;15(4):305–316. doi: 10.1016/0143-4160(94)90070-1. [DOI] [PubMed] [Google Scholar]
  64. Fujisawa H. Calmodulin-dependent protein kinase II. Bioessays. 1990 Jan;12(1):27–29. doi: 10.1002/bies.950120106. [DOI] [PubMed] [Google Scholar]
  65. Gao L., Tripathy A., Lu X., Meissner G. Evidence for a role of C-terminal amino acid residues in skeletal muscle Ca2+ release channel (ryanodine receptor) function. FEBS Lett. 1997 Jul 21;412(1):223–226. doi: 10.1016/s0014-5793(97)00781-3. [DOI] [PubMed] [Google Scholar]
  66. Giannini G., Conti A., Mammarella S., Scrobogna M., Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995 Mar;128(5):893–904. doi: 10.1083/jcb.128.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Gilchrist J. S., Belcastro A. N., Katz S. Intraluminal Ca2+ dependence of Ca2+ and ryanodine-mediated regulation of skeletal muscle sarcoplasmic reticulum Ca2+ release. J Biol Chem. 1992 Oct 15;267(29):20850–20856. [PubMed] [Google Scholar]
  68. Gilchrist J. S., Wang K. K., Katz S., Belcastro A. N. Calcium-activated neutral protease effects upon skeletal muscle sarcoplasmic reticulum protein structure and calcium release. J Biol Chem. 1992 Oct 15;267(29):20857–20865. [PubMed] [Google Scholar]
  69. Gray P. C., Tibbs V. C., Catterall W. A., Murphy B. J. Identification of a 15-kDa cAMP-dependent protein kinase-anchoring protein associated with skeletal muscle L-type calcium channels. J Biol Chem. 1997 Mar 7;272(10):6297–6302. doi: 10.1074/jbc.272.10.6297. [DOI] [PubMed] [Google Scholar]
  70. Grunwald R., Meissner G. Lumenal sites and C terminus accessibility of the skeletal muscle calcium release channel (ryanodine receptor). J Biol Chem. 1995 May 12;270(19):11338–11347. doi: 10.1074/jbc.270.19.11338. [DOI] [PubMed] [Google Scholar]
  71. Guerini D. Calcineurin: not just a simple protein phosphatase. Biochem Biophys Res Commun. 1997 Jun 18;235(2):271–275. doi: 10.1006/bbrc.1997.6802. [DOI] [PubMed] [Google Scholar]
  72. Guihard G., Proteau S., Rousseau E. Does the nuclear envelope contain two types of ligand-gated Ca2+ release channels? FEBS Lett. 1997 Sep 1;414(1):89–94. doi: 10.1016/s0014-5793(97)00949-6. [DOI] [PubMed] [Google Scholar]
  73. Gunteski-Hamblin A. M., Song G., Walsh R. A., Frenzke M., Boivin G. P., Dorn G. W., 2nd, Kaetzel M. A., Horseman N. D., Dedman J. R. Annexin VI overexpression targeted to heart alters cardiomyocyte function in transgenic mice. Am J Physiol. 1996 Mar;270(3 Pt 2):H1091–H1100. doi: 10.1152/ajpheart.1996.270.3.H1091. [DOI] [PubMed] [Google Scholar]
  74. Guo W., Jorgensen A. O., Campbell K. P. Characterization and ultrastructural localization of a novel 90-kDa protein unique to skeletal muscle junctional sarcoplasmic reticulum. J Biol Chem. 1994 Nov 11;269(45):28359–28365. [PubMed] [Google Scholar]
  75. Guo W., Jorgensen A. O., Jones L. R., Campbell K. P. Biochemical characterization and molecular cloning of cardiac triadin. J Biol Chem. 1996 Jan 5;271(1):458–465. doi: 10.1074/jbc.271.1.458. [DOI] [PubMed] [Google Scholar]
  76. Hain J., Onoue H., Mayrleitner M., Fleischer S., Schindler H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem. 1995 Feb 3;270(5):2074–2081. doi: 10.1074/jbc.270.5.2074. [DOI] [PubMed] [Google Scholar]
  77. Hajnóczky G., Gao E., Nomura T., Hoek J. B., Thomas A. P. Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-trisphosphate-induced Ca2+ mobilization in permeabilized hepatocytes. Biochem J. 1993 Jul 15;293(Pt 2):413–422. doi: 10.1042/bj2930413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Harnick D. J., Jayaraman T., Ma Y., Mulieri P., Go L. O., Marks A. R. The human type 1 inositol 1,4,5-trisphosphate receptor from T lymphocytes. Structure, localization, and tyrosine phosphorylation. J Biol Chem. 1995 Feb 10;270(6):2833–2840. doi: 10.1074/jbc.270.6.2833. [DOI] [PubMed] [Google Scholar]
  79. Hazarika P., Kaetzel M. A., Sheldon A., Karin N. J., Fleischer S., Nelson T. E., Dedman J. R. Annexin VI is associated with calcium-sequestering organelles. J Cell Biochem. 1991 May;46(1):78–85. doi: 10.1002/jcb.240460112. [DOI] [PubMed] [Google Scholar]
  80. Hazarika P., Sheldon A., Kaetzel M. A., Díaz-Muñoz M., Hamilton S. L., Dedman J. R. Regulation of the sarcoplasmic reticulum Ca(2+)-release channel requires intact annexin VI. J Cell Biochem. 1991 May;46(1):86–93. doi: 10.1002/jcb.240460113. [DOI] [PubMed] [Google Scholar]
  81. Hill T. D., Campos-Gonzalez R., Kindmark H., Boynton A. L. Inhibition of inositol trisphosphate-stimulated calcium mobilization by calmodulin antagonists in rat liver epithelial cells. J Biol Chem. 1988 Nov 5;263(31):16479–16484. [PubMed] [Google Scholar]
  82. Hilly M., Piétri-Rouxel F., Coquil J. F., Guy M., Mauger J. P. Thiol reagents increase the affinity of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1993 Aug 5;268(22):16488–16494. [PubMed] [Google Scholar]
  83. Hilt W., Wolf D. H. Proteasomes: destruction as a programme. Trends Biochem Sci. 1996 Mar;21(3):96–102. [PubMed] [Google Scholar]
  84. Hohenegger M., Suko J. Phosphorylation of the purified cardiac ryanodine receptor by exogenous and endogenous protein kinases. Biochem J. 1993 Dec 1;296(Pt 2):303–308. doi: 10.1042/bj2960303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Houslay M. D., Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci. 1997 Jun;22(6):217–224. doi: 10.1016/s0968-0004(97)01050-5. [DOI] [PubMed] [Google Scholar]
  86. Iino M., Takano-Ohmuro H., Kawana Y., Endo M. Enhancement of Ca2+-induced Ca2+ release in calpain treated rabbit skinned muscle fibers. Biochem Biophys Res Commun. 1992 Jun 15;185(2):713–718. doi: 10.1016/0006-291x(92)91684-i. [DOI] [PubMed] [Google Scholar]
  87. Ikemoto N., Ronjat M., Mészáros L. G., Koshita M. Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry. 1989 Aug 8;28(16):6764–6771. doi: 10.1021/bi00442a033. [DOI] [PubMed] [Google Scholar]
  88. Ikemoto T., Iino M., Endo M. Enhancing effect of calmodulin on Ca(2+)-induced Ca2+ release in the sarcoplasmic reticulum of rabbit skeletal muscle fibres. J Physiol. 1995 Sep 15;487(Pt 3):573–582. doi: 10.1113/jphysiol.1995.sp020901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Islam M. S., Leibiger I., Leibiger B., Rossi D., Sorrentino V., Ekström T. J., Westerblad H., Andrade F. H., Berggren P. O. In situ activation of the type 2 ryanodine receptor in pancreatic beta cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6145–6150. doi: 10.1073/pnas.95.11.6145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Jayaraman T., Brillantes A. M., Timerman A. P., Fleischer S., Erdjument-Bromage H., Tempst P., Marks A. R. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem. 1992 May 15;267(14):9474–9477. [PubMed] [Google Scholar]
  91. Jayaraman T., Ondrias K., Ondriasová E., Marks A. R. Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. Science. 1996 Jun 7;272(5267):1492–1494. doi: 10.1126/science.272.5267.1492. [DOI] [PubMed] [Google Scholar]
  92. Jia W. W., Liu Y., Cynader M. Postnatal development of inositol 1,4,5-trisphosphate receptors: a disparity with protein kinase C. Brain Res Dev Brain Res. 1995 Mar 16;85(1):109–118. doi: 10.1016/0165-3806(94)00181-x. [DOI] [PubMed] [Google Scholar]
  93. Jones L. R., Suzuki Y. J., Wang W., Kobayashi Y. M., Ramesh V., Franzini-Armstrong C., Cleemann L., Morad M. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest. 1998 Apr 1;101(7):1385–1393. doi: 10.1172/JCI1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Jones L. R., Zhang L., Sanborn K., Jorgensen A. O., Kelley J. Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. J Biol Chem. 1995 Dec 22;270(51):30787–30796. doi: 10.1074/jbc.270.51.30787. [DOI] [PubMed] [Google Scholar]
  95. Joseph S. K., Pierson S., Samanta S. Trypsin digestion of the inositol trisphosphate receptor: implications for the conformation and domain organization of the protein. Biochem J. 1995 May 1;307(Pt 3):859–865. doi: 10.1042/bj3070859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Joseph S. K., Ryan S. V. Phosphorylation of the inositol trisphosphate receptor in isolated rat hepatocytes. J Biol Chem. 1993 Nov 5;268(31):23059–23065. [PubMed] [Google Scholar]
  97. Joseph S. K., Samanta S. Detergent solubility of the inositol trisphosphate receptor in rat brain membranes. Evidence for association of the receptor with ankyrin. J Biol Chem. 1993 Mar 25;268(9):6477–6486. [PubMed] [Google Scholar]
  98. Kagari T., Yamaguchi N., Kasai M. Biochemical characterization of calsequestrin-binding 30-kDa protein in sarcoplasmic reticulum of skeletal muscle. Biochem Biophys Res Commun. 1996 Oct 23;227(3):700–706. doi: 10.1006/bbrc.1996.1572. [DOI] [PubMed] [Google Scholar]
  99. Kaplin A. I., Ferris C. D., Voglmaier S. M., Snyder S. H. Purified reconstituted inositol 1,4,5-trisphosphate receptors. Thiol reagents act directly on receptor protein. J Biol Chem. 1994 Nov 18;269(46):28972–28978. [PubMed] [Google Scholar]
  100. Katayama E., Funahashi H., Michikawa T., Shiraishi T., Ikemoto T., Iino M., Mikoshiba K. Native structure and arrangement of inositol-1,4,5-trisphosphate receptor molecules in bovine cerebellar Purkinje cells as studied by quick-freeze deep-etch electron microscopy. EMBO J. 1996 Sep 16;15(18):4844–4851. [PMC free article] [PubMed] [Google Scholar]
  101. Kawasaki T., Kasai M. Regulation of calcium channel in sarcoplasmic reticulum by calsequestrin. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1120–1127. doi: 10.1006/bbrc.1994.1347. [DOI] [PubMed] [Google Scholar]
  102. Knudson C. M., Stang K. K., Jorgensen A. O., Campbell K. P. Biochemical characterization of ultrastructural localization of a major junctional sarcoplasmic reticulum glycoprotein (triadin). J Biol Chem. 1993 Jun 15;268(17):12637–12645. [PubMed] [Google Scholar]
  103. Knudson C. M., Stang K. K., Moomaw C. R., Slaughter C. A., Campbell K. P. Primary structure and topological analysis of a skeletal muscle-specific junctional sarcoplasmic reticulum glycoprotein (triadin). J Biol Chem. 1993 Jun 15;268(17):12646–12654. [PubMed] [Google Scholar]
  104. Kobayashi S., Somlyo A. P., Somlyo A. V. Guanine nucleotide- and inositol 1,4,5-trisphosphate-induced calcium release in rabbit main pulmonary artery. J Physiol. 1988 Sep;403:601–619. doi: 10.1113/jphysiol.1988.sp017267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Komalavilas P., Lincoln T. M. Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic GMP-dependent protein kinase. J Biol Chem. 1994 Mar 25;269(12):8701–8707. [PubMed] [Google Scholar]
  106. Komalavilas P., Lincoln T. M. Phosphorylation of the inositol 1,4,5-trisphosphate receptor. Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. J Biol Chem. 1996 Sep 6;271(36):21933–21938. doi: 10.1074/jbc.271.36.21933. [DOI] [PubMed] [Google Scholar]
  107. Leddy J. J., Murphy B. J., Qu-Yi, Doucet J. P., Pratt C., Tuana B. S. A 60 kDa polypeptide of skeletal-muscle sarcoplasmic reticulum is a calmodulin-dependent protein kinase that associates with and phosphorylates several membrane proteins. Biochem J. 1993 Nov 1;295(Pt 3):849–856. doi: 10.1042/bj2950849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Leong P., MacLennan D. H. A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. J Biol Chem. 1998 Apr 3;273(14):7791–7794. doi: 10.1074/jbc.273.14.7791. [DOI] [PubMed] [Google Scholar]
  109. Liu G., Abramson J. J., Zable A. C., Pessah I. N. Direct evidence for the existence and functional role of hyperreactive sulfhydryls on the ryanodine receptor-triadin complex selectively labeled by the coumarin maleimide 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin. Mol Pharmacol. 1994 Feb;45(2):189–200. [PubMed] [Google Scholar]
  110. Liu G., Pessah I. N. Molecular interaction between ryanodine receptor and glycoprotein triadin involves redox cycling of functionally important hyperreactive sulfhydryls. J Biol Chem. 1994 Dec 30;269(52):33028–33034. [PubMed] [Google Scholar]
  111. Lièvremont J. P., Rizzuto R., Hendershot L., Meldolesi J. BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem. 1997 Dec 5;272(49):30873–30879. doi: 10.1074/jbc.272.49.30873. [DOI] [PubMed] [Google Scholar]
  112. Lokuta A. J., Meyers M. B., Sander P. R., Fishman G. I., Valdivia H. H. Modulation of cardiac ryanodine receptors by sorcin. J Biol Chem. 1997 Oct 3;272(40):25333–25338. doi: 10.1074/jbc.272.40.25333. [DOI] [PubMed] [Google Scholar]
  113. Lokuta A. J., Rogers T. B., Lederer W. J., Valdivia H. H. Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-dephosphorylation mechanism. J Physiol. 1995 Sep 15;487(Pt 3):609–622. doi: 10.1113/jphysiol.1995.sp020904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Loomis-Husselbee J. W., Cullen P. J., Dreikausen U. E., Irvine R. F., Dawson A. P. Synergistic effects of inositol 1,3,4,5-tetrakisphosphate on inositol 2,4,5-triphosphate-stimulated Ca2+ release do not involve direct interaction of inositol 1,3,4,5-tetrakisphosphate with inositol triphosphate-binding sites. Biochem J. 1996 Mar 15;314(Pt 3):811–816. doi: 10.1042/bj3140811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Lu X., Xu L., Meissner G. Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor. J Biol Chem. 1994 Mar 4;269(9):6511–6516. [PubMed] [Google Scholar]
  116. Lu X., Xu L., Meissner G. Phosphorylation of dihydropyridine receptor II-III loop peptide regulates skeletal muscle calcium release channel function. Evidence for an essential role of the beta-OH group of Ser687. J Biol Chem. 1995 Aug 4;270(31):18459–18464. doi: 10.1074/jbc.270.31.18459. [DOI] [PubMed] [Google Scholar]
  117. Mackrill J. J., Challiss R. A., O'connell D. A., Lai F. A., Nahorski S. R. Differential expression and regulation of ryanodine receptor and myo-inositol 1,4,5-trisphosphate receptor Ca2+ release channels in mammalian tissues and cell lines. Biochem J. 1997 Oct 1;327(Pt 1):251–258. doi: 10.1042/bj3270251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Mackrill J. J. Possible regulation of the skeletal muscle ryanodine receptor by a polyubiquitin binding subunit of the 26S proteasome. Biochem Biophys Res Commun. 1998 Apr 17;245(2):428–429. doi: 10.1006/bbrc.1998.8450. [DOI] [PubMed] [Google Scholar]
  119. Magnusson A., Haug L. S., Walaas S. I., Ostvold A. C. Calcium-induced degradation of the inositol (1,4,5)-trisphosphate receptor/Ca(2+)-channel. FEBS Lett. 1993 Jun 1;323(3):229–232. doi: 10.1016/0014-5793(93)81345-z. [DOI] [PubMed] [Google Scholar]
  120. Mao C., Kim S. H., Almenoff J. S., Rudner X. L., Kearney D. M., Kindman L. A. Molecular cloning and characterization of SCaMPER, a sphingolipid Ca2+ release-mediating protein from endoplasmic reticulum. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1993–1996. doi: 10.1073/pnas.93.5.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Marks A. R. Cellular functions of immunophilins. Physiol Rev. 1996 Jul;76(3):631–649. doi: 10.1152/physrev.1996.76.3.631. [DOI] [PubMed] [Google Scholar]
  122. Marty I., Robert M., Ronjat M., Bally I., Arlaud G., Villaz M. Localization of the N-terminal and C-terminal ends of triadin with respect to the sarcoplasmic reticulum membrane of rabbit skeletal muscle. Biochem J. 1995 May 1;307(Pt 3):769–774. doi: 10.1042/bj3070769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Marty I., Robert M., Villaz M., De Jongh K., Lai Y., Catterall W. A., Ronjat M. Biochemical evidence for a complex involving dihydropyridine receptor and ryanodine receptor in triad junctions of skeletal muscle. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2270–2274. doi: 10.1073/pnas.91.6.2270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Marx S. O., Ondrias K., Marks A. R. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors) Science. 1998 Aug 7;281(5378):818–821. doi: 10.1126/science.281.5378.818. [DOI] [PubMed] [Google Scholar]
  125. Matovcik L. M., Maranto A. R., Soroka C. J., Gorelick F. S., Smith J., Goldenring J. R. Co-distribution of calmodulin-dependent protein kinase II and inositol trisphosphate receptors in an apical domain of gastrointestinal mucosal cells. J Histochem Cytochem. 1996 Nov;44(11):1243–1250. doi: 10.1177/44.11.8918899. [DOI] [PubMed] [Google Scholar]
  126. Matter N., Ritz M. F., Freyermuth S., Rogue P., Malviya A. N. Stimulation of nuclear protein kinase C leads to phosphorylation of nuclear inositol 1,4,5-trisphosphate receptor and accelerated calcium release by inositol 1,4,5-trisphosphate from isolated rat liver nuclei. J Biol Chem. 1993 Jan 5;268(1):732–736. [PubMed] [Google Scholar]
  127. Mayrleitner M., Chandler R., Schindler H., Fleischer S. Phosphorylation with protein kinases modulates calcium loading of terminal cisternae of sarcoplasmic reticulum from skeletal muscle. Cell Calcium. 1995 Sep;18(3):197–206. doi: 10.1016/0143-4160(95)90064-0. [DOI] [PubMed] [Google Scholar]
  128. McCartney S., Little B. M., Langeberg L. K., Scott J. D. Cloning and characterization of A-kinase anchor protein 100 (AKAP100). A protein that targets A-kinase to the sarcoplasmic reticulum. J Biol Chem. 1995 Apr 21;270(16):9327–9333. doi: 10.1074/jbc.270.16.9327. [DOI] [PubMed] [Google Scholar]
  129. Meissner G., Henderson J. S. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem. 1987 Mar 5;262(7):3065–3073. [PubMed] [Google Scholar]
  130. Meissner G., Rousseau E., Lai F. A. Structural and functional correlation of the trypsin-digested Ca2+ release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1989 Jan 25;264(3):1715–1722. [PubMed] [Google Scholar]
  131. Meissner G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem. 1986 May 15;261(14):6300–6306. [PubMed] [Google Scholar]
  132. Meldolesi J., Krause K. H., Michalak M. Calreticulin: how many functions in how many cellular compartments? Como, April 1996. Cell Calcium. 1996 Jul;20(1):83–86. doi: 10.1016/s0143-4160(96)90053-6. [DOI] [PubMed] [Google Scholar]
  133. Menegazzi P., Larini F., Treves S., Guerrini R., Quadroni M., Zorzato F. Identification and characterization of three calmodulin binding sites of the skeletal muscle ryanodine receptor. Biochemistry. 1994 Aug 9;33(31):9078–9084. doi: 10.1021/bi00197a008. [DOI] [PubMed] [Google Scholar]
  134. Mery L., Mesaeli N., Michalak M., Opas M., Lew D. P., Krause K. H. Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem. 1996 Apr 19;271(16):9332–9339. doi: 10.1074/jbc.271.16.9332. [DOI] [PubMed] [Google Scholar]
  135. Messina D. N., Speer M. C., Pericak-Vance M. A., McNally E. M. Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Am J Hum Genet. 1997 Oct;61(4):909–917. doi: 10.1086/514896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Meyers M. B., Pickel V. M., Sheu S. S., Sharma V. K., Scotto K. W., Fishman G. I. Association of sorcin with the cardiac ryanodine receptor. J Biol Chem. 1995 Nov 3;270(44):26411–26418. doi: 10.1074/jbc.270.44.26411. [DOI] [PubMed] [Google Scholar]
  137. Meyers M. B., Puri T. S., Chien A. J., Gao T., Hsu P. H., Hosey M. M., Fishman G. I. Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca2+ channels. J Biol Chem. 1998 Jul 24;273(30):18930–18935. doi: 10.1074/jbc.273.30.18930. [DOI] [PubMed] [Google Scholar]
  138. Mignery G. A., Südhof T. C. The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J. 1990 Dec;9(12):3893–3898. doi: 10.1002/j.1460-2075.1990.tb07609.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Mikami A., Imoto K., Tanabe T., Niidome T., Mori Y., Takeshima H., Narumiya S., Numa S. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature. 1989 Jul 20;340(6230):230–233. doi: 10.1038/340230a0. [DOI] [PubMed] [Google Scholar]
  140. Mikoshiba K. The InsP3 receptor and intracellular Ca2+ signaling. Curr Opin Neurobiol. 1997 Jun;7(3):339–345. doi: 10.1016/s0959-4388(97)80061-x. [DOI] [PubMed] [Google Scholar]
  141. Missiaen L., Parys J. B., Sienaert I., Maes K., Kunzelmann K., Takahashi M., Tanzawa K., De Smedt H. Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem. 1998 Apr 10;273(15):8983–8986. doi: 10.1074/jbc.273.15.8983. [DOI] [PubMed] [Google Scholar]
  142. Mitchell R. D., Simmerman H. K., Jones L. R. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J Biol Chem. 1988 Jan 25;263(3):1376–1381. [PubMed] [Google Scholar]
  143. Monkawa T., Miyawaki A., Sugiyama T., Yoneshima H., Yamamoto-Hino M., Furuichi T., Saruta T., Hasegawa M., Mikoshiba K. Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem. 1995 Jun 16;270(24):14700–14704. doi: 10.1074/jbc.270.24.14700. [DOI] [PubMed] [Google Scholar]
  144. Monnier N., Procaccio V., Stieglitz P., Lunardi J. Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet. 1997 Jun;60(6):1316–1325. doi: 10.1086/515454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Murray B. E., Ohlendieck K. Complex formation between calsequestrin and the ryanodine receptor in fast- and slow-twitch rabbit skeletal muscle. FEBS Lett. 1998 Jun 16;429(3):317–322. doi: 10.1016/s0014-5793(98)00621-8. [DOI] [PubMed] [Google Scholar]
  146. Murray B. E., Ohlendieck K. Cross-linking analysis of the ryanodine receptor and alpha1-dihydropyridine receptor in rabbit skeletal muscle triads. Biochem J. 1997 Jun 1;324(Pt 2):689–696. doi: 10.1042/bj3240689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Murthy K. S., Severi C., Grider J. R., Makhlouf G. M. Inhibition of IP3 and IP3-dependent Ca2+ mobilization by cyclic nucleotides in isolated gastric muscle cells. Am J Physiol. 1993 May;264(5 Pt 1):G967–G974. doi: 10.1152/ajpgi.1993.264.5.G967. [DOI] [PubMed] [Google Scholar]
  148. Nahorski S. R., Wilcox R. A., Mackrill J. J., Challiss R. A. Phosphoinositide-derived second messengers and the regulation of Ca2+ in vascular smooth muscle. J Hypertens Suppl. 1994 Dec;12(10):S133–S143. [PubMed] [Google Scholar]
  149. Nakade S., Maeda N., Mikoshiba K. Involvement of the C-terminus of the inositol 1,4,5-trisphosphate receptor in Ca2+ release analysed using region-specific monoclonal antibodies. Biochem J. 1991 Jul 1;277(Pt 1):125–131. doi: 10.1042/bj2770125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Nakade S., Rhee S. K., Hamanaka H., Mikoshiba K. Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homotetrameric inositol 1,4,5-trisphosphate receptor (type I) increases Ca2+ flux in reconstituted lipid vesicles. J Biol Chem. 1994 Mar 4;269(9):6735–6742. [PubMed] [Google Scholar]
  151. Nakai J., Dirksen R. T., Nguyen H. T., Pessah I. N., Beam K. G., Allen P. D. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature. 1996 Mar 7;380(6569):72–75. doi: 10.1038/380072a0. [DOI] [PubMed] [Google Scholar]
  152. Nakai J., Sekiguchi N., Rando T. A., Allen P. D., Beam K. G. Two regions of the ryanodine receptor involved in coupling with L-type Ca2+ channels. J Biol Chem. 1998 May 29;273(22):13403–13406. doi: 10.1074/jbc.273.22.13403. [DOI] [PubMed] [Google Scholar]
  153. Neylon C. B., Nickashin A., Tkachuk V. A., Bobik A. Heterotrimeric Gi protein is associated with the inositol 1,4,5-trisphosphate receptor complex and modulates calcium flux. Cell Calcium. 1998 May;23(5):281–289. doi: 10.1016/s0143-4160(98)90024-0. [DOI] [PubMed] [Google Scholar]
  154. Niki I., Yokokura H., Sudo T., Kato M., Hidaka H. Ca2+ signaling and intracellular Ca2+ binding proteins. J Biochem. 1996 Oct;120(4):685–698. doi: 10.1093/oxfordjournals.jbchem.a021466. [DOI] [PubMed] [Google Scholar]
  155. Nucifora F. C., Jr, Li S. H., Danoff S., Ullrich A., Ross C. A. Molecular cloning of a cDNA for the human inositol 1,4,5-trisphosphate receptor type 1, and the identification of a third alternatively spliced variant. Brain Res Mol Brain Res. 1995 Sep;32(2):291–296. doi: 10.1016/0169-328x(95)00089-b. [DOI] [PubMed] [Google Scholar]
  156. O'Rourke F., Matthews E., Feinstein M. B. Isolation of InsP4 and InsP6 binding proteins from human platelets: InsP4 promotes Ca2+ efflux from inside-out plasma membrane vesicles containing 104 kDa GAP1IP4BP protein. Biochem J. 1996 May 1;315(Pt 3):1027–1034. doi: 10.1042/bj3151027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. O'Rourke F., Soons K., Flaumenhauft R., Watras J., Baio-Larue C., Matthews E., Feinstein M. B. Ca2+ release by inositol 1,4,5-trisphosphate is blocked by the K(+)-channel blockers apamin and tetrapentylammonium ion, and a monoclonal antibody to a 63 kDa membrane protein: reversal of blockade by K+ ionophores nigericin and valinomycin and purification of the 63 kDa antibody-binding protein. Biochem J. 1994 Jun 15;300(Pt 3):673–683. doi: 10.1042/bj3000673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Orr I., Shoshan-Barmatz V. Modulation of the skeletal muscle ryanodine receptor by endogenous phosphorylation of 160/150-kDa proteins of the sarcoplasmic reticulum. Biochim Biophys Acta. 1996 Aug 14;1283(1):80–88. doi: 10.1016/0005-2736(96)00078-8. [DOI] [PubMed] [Google Scholar]
  159. Palade P., Dettbarn C., Volpe P., Alderson B., Otero A. S. Direct inhibition of inositol-1,4,5-trisphosphate-induced Ca2+ release from brain microsomes by K+ channel blockers. Mol Pharmacol. 1989 Oct;36(4):664–672. [PubMed] [Google Scholar]
  160. Patel S., Morris S. A., Adkins C. E., O'Beirne G., Taylor C. W. Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11627–11632. doi: 10.1073/pnas.94.21.11627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Pickel V. M., Clarke C. L., Meyers M. B. Ultrastructural localization of sorcin, a 22 kDa calcium binding protein, in the rat caudate-putamen nucleus: association with ryanodine receptors and intracellular calcium release. J Comp Neurol. 1997 Oct 6;386(4):625–634. doi: 10.1002/(sici)1096-9861(19971006)386:4<625::aid-cne8>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  162. Pietri F., Hilly M., Mauger J. P. Calcium mediates the interconversion between two states of the liver inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1990 Oct 15;265(29):17478–17485. [PubMed] [Google Scholar]
  163. Presotto C., Agnolucci L., Biral D., Dainese P., Bernardi P., Salviati G. A novel muscle protein located inside the terminal cisternae of the sarcoplasmic reticulum. J Biol Chem. 1997 Mar 7;272(10):6534–6538. doi: 10.1074/jbc.272.10.6534. [DOI] [PubMed] [Google Scholar]
  164. Protasi F., Franzini-Armstrong C., Allen P. D. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle. J Cell Biol. 1998 Feb 23;140(4):831–842. doi: 10.1083/jcb.140.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Rardon D. P., Cefali D. C., Mitchell R. D., Seiler S. M., Hathaway D. R., Jones L. R. Digestion of cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles with calpain II. Effects on the Ca2+ release channel. Circ Res. 1990 Jul;67(1):84–96. doi: 10.1161/01.res.67.1.84. [DOI] [PubMed] [Google Scholar]
  166. Remppis A., Greten T., Schäfer B. W., Hunziker P., Erne P., Katus H. A., Heizmann C. W. Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy. Biochim Biophys Acta. 1996 Oct 11;1313(3):253–257. doi: 10.1016/0167-4889(96)00097-3. [DOI] [PubMed] [Google Scholar]
  167. Renard-Rooney D. C., Joseph S. K., Seitz M. B., Thomas A. P. Effect of oxidized glutathione and temperature on inositol 1,4,5-trisphosphate binding in permeabilized hepatocytes. Biochem J. 1995 Aug 15;310(Pt 1):185–192. doi: 10.1042/bj3100185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Salvatori S., Furlan S., Millikin B., Sabbadini R., Betto R., Margreth A., Salviati G. Localization of protein kinase C in skeletal muscle T-tubule membranes. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1073–1080. doi: 10.1006/bbrc.1993.2360. [DOI] [PubMed] [Google Scholar]
  169. Savart M., Verret C., Dutaud D., Touyarot K., Elamrani N., Ducastaing A. Isolation and identification of a mu-calpain-protein kinase C alpha complex in skeletal muscle. FEBS Lett. 1995 Feb 6;359(1):60–64. doi: 10.1016/0014-5793(95)00014-z. [DOI] [PubMed] [Google Scholar]
  170. Sayers L. G., Miyawaki A., Muto A., Takeshita H., Yamamoto A., Michikawa T., Furuichi T., Mikoshiba K. Intracellular targeting and homotetramer formation of a truncated inositol 1,4,5-trisphosphate receptor-green fluorescent protein chimera in Xenopus laevis oocytes: evidence for the involvement of the transmembrane spanning domain in endoplasmic reticulum targeting and homotetramer complex formation. Biochem J. 1997 Apr 1;323(Pt 1):273–280. doi: 10.1042/bj3230273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Schäfer B. W., Heizmann C. W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996 Apr;21(4):134–140. doi: 10.1016/s0968-0004(96)80167-8. [DOI] [PubMed] [Google Scholar]
  172. Shoshan-Barmatz V., Orr I., Weil S., Meyer H., Varsanyi M., Heilmeyer L. M. The identification of the phosphorylated 150/160-kDa proteins of sarcoplasmic reticulum, their kinase and their association with the ryanodine receptor. Biochim Biophys Acta. 1996 Aug 14;1283(1):89–100. doi: 10.1016/0005-2736(96)00079-x. [DOI] [PubMed] [Google Scholar]
  173. Shoshan-Barmatz V., Weil S., Meyer H., Varsanyi M., Heilmeyer L. M. Endogenous, Ca(2+)-dependent cysteine-protease cleaves specifically the ryanodine receptor/Ca2+ release channel in skeletal muscle. J Membr Biol. 1994 Dec;142(3):281–288. doi: 10.1007/BF00233435. [DOI] [PubMed] [Google Scholar]
  174. Shou W., Aghdasi B., Armstrong D. L., Guo Q., Bao S., Charng M. J., Mathews L. M., Schneider M. D., Hamilton S. L., Matzuk M. M. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature. 1998 Jan 29;391(6666):489–492. doi: 10.1038/35146. [DOI] [PubMed] [Google Scholar]
  175. Slavik K. J., Wang J. P., Aghdasi B., Zhang J. Z., Mandel F., Malouf N., Hamilton S. L. A carboxy-terminal peptide of the alpha 1-subunit of the dihydropyridine receptor inhibits Ca(2+)-release channels. Am J Physiol. 1997 May;272(5 Pt 1):C1475–C1481. doi: 10.1152/ajpcell.1997.272.5.C1475. [DOI] [PubMed] [Google Scholar]
  176. Smith J. S., Rousseau E., Meissner G. Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle. Circ Res. 1989 Feb;64(2):352–359. doi: 10.1161/01.res.64.2.352. [DOI] [PubMed] [Google Scholar]
  177. Sorimachi H., Ishiura S., Suzuki K. Structure and physiological function of calpains. Biochem J. 1997 Dec 15;328(Pt 3):721–732. doi: 10.1042/bj3280721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Sorrentino V., Volpe P. Ryanodine receptors: how many, where and why? Trends Pharmacol Sci. 1993 Mar;14(3):98–103. doi: 10.1016/0165-6147(93)90072-r. [DOI] [PubMed] [Google Scholar]
  179. Spät A., Rohács T., Hunyady L. Plasmalemmal dihydropyridine receptors modify the function of subplasmalemmal inositol 1,4,5-trisphosphate receptors: a hypothesis. Cell Calcium. 1994 May;15(5):431–437. doi: 10.1016/0143-4160(94)90018-3. [DOI] [PubMed] [Google Scholar]
  180. Suko J., Maurer-Fogy I., Plank B., Bertel O., Wyskovsky W., Hohenegger M., Hellmann G. Phosphorylation of serine 2843 in ryanodine receptor-calcium release channel of skeletal muscle by cAMP-, cGMP- and CaM-dependent protein kinase. Biochim Biophys Acta. 1993 Jan 17;1175(2):193–206. doi: 10.1016/0167-4889(93)90023-i. [DOI] [PubMed] [Google Scholar]
  181. Supattapone S., Danoff S. K., Theibert A., Joseph S. K., Steiner J., Snyder S. H. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8747–8750. doi: 10.1073/pnas.85.22.8747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Takasago T., Imagawa T., Furukawa K., Ogurusu T., Shigekawa M. Regulation of the cardiac ryanodine receptor by protein kinase-dependent phosphorylation. J Biochem. 1991 Jan;109(1):163–170. doi: 10.1093/oxfordjournals.jbchem.a123339. [DOI] [PubMed] [Google Scholar]
  183. Takasago T., Imagawa T., Shigekawa M. Phosphorylation of the cardiac ryanodine receptor by cAMP-dependent protein kinase. J Biochem. 1989 Nov;106(5):872–877. doi: 10.1093/oxfordjournals.jbchem.a122945. [DOI] [PubMed] [Google Scholar]
  184. Takata M., Sabe H., Hata A., Inazu T., Homma Y., Nukada T., Yamamura H., Kurosaki T. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 1994 Mar 15;13(6):1341–1349. doi: 10.1002/j.1460-2075.1994.tb06387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Takeshima H., Nishimura S., Nishi M., Ikeda M., Sugimoto T. A brain-specific transcript from the 3'-terminal region of the skeletal muscle ryanodine receptor gene. FEBS Lett. 1993 May 10;322(2):105–110. doi: 10.1016/0014-5793(93)81547-d. [DOI] [PubMed] [Google Scholar]
  186. Tanabe T., Beam K. G., Adams B. A., Niidome T., Numa S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature. 1990 Aug 9;346(6284):567–569. doi: 10.1038/346567a0. [DOI] [PubMed] [Google Scholar]
  187. Tanabe T., Mikami A., Numa S., Beam K. G. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature. 1990 Mar 29;344(6265):451–453. doi: 10.1038/344451a0. [DOI] [PubMed] [Google Scholar]
  188. Tanabe T., Takeshima H., Mikami A., Flockerzi V., Takahashi H., Kangawa K., Kojima M., Matsuo H., Hirose T., Numa S. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature. 1987 Jul 23;328(6128):313–318. doi: 10.1038/328313a0. [DOI] [PubMed] [Google Scholar]
  189. Tanaka Y., Tashjian A. H., Jr Calmodulin is a selective mediator of Ca(2+)-induced Ca2+ release via the ryanodine receptor-like Ca2+ channel triggered by cyclic ADP-ribose. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3244–3248. doi: 10.1073/pnas.92.8.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Timerman A. P., Ogunbumni E., Freund E., Wiederrecht G., Marks A. R., Fleischer S. The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1993 Nov 5;268(31):22992–22999. [PubMed] [Google Scholar]
  191. Timerman A. P., Onoue H., Xin H. B., Barg S., Copello J., Wiederrecht G., Fleischer S. Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J Biol Chem. 1996 Aug 23;271(34):20385–20391. doi: 10.1074/jbc.271.34.20385. [DOI] [PubMed] [Google Scholar]
  192. Treves S., Scutari E., Robert M., Groh S., Ottolia M., Prestipino G., Ronjat M., Zorzato F. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Biochemistry. 1997 Sep 23;36(38):11496–11503. doi: 10.1021/bi970160w. [DOI] [PubMed] [Google Scholar]
  193. Tripathy A., Xu L., Mann G., Meissner G. Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys J. 1995 Jul;69(1):106–119. doi: 10.1016/S0006-3495(95)79880-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Van der Bliek A. M., Meyers M. B., Biedler J. L., Hes E., Borst P. A 22-kd protein (sorcin/V19) encoded by an amplified gene in multidrug-resistant cells, is homologous to the calcium-binding light chain of calpain. EMBO J. 1986 Dec 1;5(12):3201–3208. doi: 10.1002/j.1460-2075.1986.tb04630.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Wagenknecht T., Radermacher M., Grassucci R., Berkowitz J., Xin H. B., Fleischer S. Locations of calmodulin and FK506-binding protein on the three-dimensional architecture of the skeletal muscle ryanodine receptor. J Biol Chem. 1997 Dec 19;272(51):32463–32471. doi: 10.1074/jbc.272.51.32463. [DOI] [PubMed] [Google Scholar]
  196. Wang J., Best P. M. Inactivation of the sarcoplasmic reticulum calcium channel by protein kinase. Nature. 1992 Oct 22;359(6397):739–741. doi: 10.1038/359739a0. [DOI] [PubMed] [Google Scholar]
  197. Wang X., Robinson P. J. Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. J Neurochem. 1997 Feb;68(2):443–456. doi: 10.1046/j.1471-4159.1997.68020443.x. [DOI] [PubMed] [Google Scholar]
  198. Willems P. H., Van den Broek B. A., Van Os C. H., De Pont J. J. Inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ release in permeabilized pancreatic acinar cells by hormonal and phorbol ester pretreatment. J Biol Chem. 1989 Jun 15;264(17):9762–9767. [PubMed] [Google Scholar]
  199. Wilson B. S., Pfeiffer J. R., Smith A. J., Oliver J. M., Oberdorf J. A., Wojcikiewicz R. J. Calcium-dependent clustering of inositol 1,4,5-trisphosphate receptors. Mol Biol Cell. 1998 Jun;9(6):1465–1478. doi: 10.1091/mbc.9.6.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Witcher D. R., Kovacs R. J., Schulman H., Cefali D. C., Jones L. R. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem. 1991 Jun 15;266(17):11144–11152. [PubMed] [Google Scholar]
  201. Witcher D. R., McPherson P. S., Kahl S. D., Lewis T., Bentley P., Mullinnix M. J., Windass J. D., Campbell K. P. Photoaffinity labeling of the ryanodine receptor/Ca2+ release channel with an azido derivative of ryanodine. J Biol Chem. 1994 May 6;269(18):13076–13079. [PubMed] [Google Scholar]
  202. Wojcikiewicz R. J., Furuichi T., Nakade S., Mikoshiba K., Nahorski S. R. Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J Biol Chem. 1994 Mar 18;269(11):7963–7969. [PubMed] [Google Scholar]
  203. Wojcikiewicz R. J., Luo S. G. Phosphorylation of inositol 1,4,5-trisphosphate receptors by cAMP-dependent protein kinase. Type I, II, and III receptors are differentially susceptible to phosphorylation and are phosphorylated in intact cells. J Biol Chem. 1998 Mar 6;273(10):5670–5677. doi: 10.1074/jbc.273.10.5670. [DOI] [PubMed] [Google Scholar]
  204. Wojcikiewicz R. J., Oberdorf J. A. Degradation of inositol 1,4,5-trisphosphate receptors during cell stimulation is a specific process mediated by cysteine protease activity. J Biol Chem. 1996 Jul 12;271(28):16652–16655. doi: 10.1074/jbc.271.28.16652. [DOI] [PubMed] [Google Scholar]
  205. Wojcikiewicz R. J. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995 May 12;270(19):11678–11683. doi: 10.1074/jbc.270.19.11678. [DOI] [PubMed] [Google Scholar]
  206. Xiao R. P., Valdivia H. H., Bogdanov K., Valdivia C., Lakatta E. G., Cheng H. The immunophilin FK506-binding protein modulates Ca2+ release channel closure in rat heart. J Physiol. 1997 Apr 15;500(Pt 2):343–354. doi: 10.1113/jphysiol.1997.sp022025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Xu L., Eu J. P., Meissner G., Stamler J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science. 1998 Jan 9;279(5348):234–237. doi: 10.1126/science.279.5348.234. [DOI] [PubMed] [Google Scholar]
  208. Xu X., Zeng W., Muallem S. Regulation of the inositol 1,4,5-trisphosphate-activated Ca2+ channel by activation of G proteins. J Biol Chem. 1996 May 17;271(20):11737–11744. doi: 10.1074/jbc.271.20.11737. [DOI] [PubMed] [Google Scholar]
  209. Yamada M., Miyawaki A., Saito K., Nakajima T., Yamamoto-Hino M., Ryo Y., Furuichi T., Mikoshiba K. The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J. 1995 May 15;308(Pt 1):83–88. doi: 10.1042/bj3080083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Yamazawa T., Takeshima H., Shimuta M., Iino M. A region of the ryanodine receptor critical for excitation-contraction coupling in skeletal muscle. J Biol Chem. 1997 Mar 28;272(13):8161–8164. doi: 10.1074/jbc.272.13.8161. [DOI] [PubMed] [Google Scholar]
  211. Yoo S. H., Albanesi J. P. Inositol 1,4,5-trisphosphate-triggered Ca2+ release from bovine adrenal medullary secretory vesicles. J Biol Chem. 1990 Aug 15;265(23):13446–13448. [PubMed] [Google Scholar]
  212. Yoo S. H., Lewis M. S. Thermodynamic study of the pH-dependent interaction of chromogranin A with an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor. Biochemistry. 1995 Jan 17;34(2):632–638. doi: 10.1021/bi00002a030. [DOI] [PubMed] [Google Scholar]
  213. Yoo S. H. pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-triphosphate receptor antibody. J Biol Chem. 1994 Apr 22;269(16):12001–12006. [PubMed] [Google Scholar]
  214. Yoshida A., Ogura A., Imagawa T., Shigekawa M., Takahashi M. Cyclic AMP-dependent phosphorylation of the rat brain ryanodine receptor. J Neurosci. 1992 Mar;12(3):1094–1100. doi: 10.1523/JNEUROSCI.12-03-01094.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Yoshida A., Takahashi M., Imagawa T., Shigekawa M., Takisawa H., Nakamura T. Phosphorylation of ryanodine receptors in rat myocytes during beta-adrenergic stimulation. J Biochem. 1992 Feb;111(2):186–190. doi: 10.1093/oxfordjournals.jbchem.a123735. [DOI] [PubMed] [Google Scholar]
  216. Zhang L., Kelley J., Schmeisser G., Kobayashi Y. M., Jones L. R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem. 1997 Sep 12;272(37):23389–23397. doi: 10.1074/jbc.272.37.23389. [DOI] [PubMed] [Google Scholar]
  217. Zhou D., Birkenmeier C. S., Williams M. W., Sharp J. J., Barker J. E., Bloch R. J. Small, membrane-bound, alternatively spliced forms of ankyrin 1 associated with the sarcoplasmic reticulum of mammalian skeletal muscle. J Cell Biol. 1997 Feb 10;136(3):621–631. doi: 10.1083/jcb.136.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Zhu D. M., Tekle E., Chock P. B., Huang C. Y. Reversible phosphorylation as a controlling factor for sustaining calcium oscillations in HeLa cells: Involvement of calmodulin-dependent kinase II and a calyculin A-inhibitable phosphatase. Biochemistry. 1996 Jun 4;35(22):7214–7223. doi: 10.1021/bi952471h. [DOI] [PubMed] [Google Scholar]
  219. Zorzato F., Menegazzi P., Treves S., Ronjat M. Role of malignant hyperthermia domain in the regulation of Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1996 Sep 13;271(37):22759–22763. doi: 10.1074/jbc.271.37.22759. [DOI] [PubMed] [Google Scholar]
  220. el-Hayek R., Antoniu B., Wang J., Hamilton S. L., Ikemoto N. Identification of calcium release-triggering and blocking regions of the II-III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem. 1995 Sep 22;270(38):22116–22118. doi: 10.1074/jbc.270.38.22116. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES