Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 1;337(Pt 3):513–521.

Determination of the calcium-binding sites of the C2 domain of protein kinase Calpha that are critical for its translocation to the plasma membrane.

S Corbalán-García 1, J A Rodríguez-Alfaro 1, J C Gómez-Fernández 1
PMCID: PMC1220004  PMID: 9895296

Abstract

The C2 domain is a conserved protein module present in various signal-transducing proteins. To investigate the function of the C2 domain of protein kinase Calpha (PKCalpha), we have generated a recombinant glutathione S-transferase-fused C2 domain from rat PKCalpha, PKC-C2. We found that PKC-C2 binds with high affinity (half-maximal binding at 0.6 microM) to lipid vesicles containing the negatively charged phospholipid phosphatidylserine. When expressed into COS and HeLa cells, most of the PKC-C2 was found at the plasma membrane, whereas when the cells were depleted of Ca2+ by incubation with EGTA and ionophore, the C2 domain was localized preferentially in the cytosol. Ca2+ titration was performed in vivo and the critical Ca2+ concentration ranged from 0.1 to 0.32 microM. We also identified, by site-directed mutagenesis, three aspartic residues critical for that Ca2+ interaction, namely Asp-187, Asp-246 and Asp-248. Mutation of these residues to asparagine, to abolish their negative charge, resulted in a domain expressed as the same extension as wild-type protein that could interact in vitro with neither Ca2+ nor phosphatidylserine. Overexpression of these mutants into COS and HeLa cells also showed that they cannot localize at the plasma membrane, as demonstrated by immunofluorescence staining and subcellular fractionation. These results suggest that the Ca2+-binding site might be involved in promoting the interaction of the C2 domain of PKCalpha with the plasma membrane in vivo.

Full Text

The Full Text of this article is available as a PDF (252.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazzi M. D., Nelsestuen G. L. Protein kinase C interaction with calcium: a phospholipid-dependent process. Biochemistry. 1990 Aug 21;29(33):7624–7630. doi: 10.1021/bi00485a012. [DOI] [PubMed] [Google Scholar]
  2. Chapman E. R., Jahn R. Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J Biol Chem. 1994 Feb 25;269(8):5735–5741. [PubMed] [Google Scholar]
  3. Coussens L., Parker P. J., Rhee L., Yang-Feng T. L., Chen E., Waterfield M. D., Francke U., Ullrich A. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science. 1986 Aug 22;233(4766):859–866. doi: 10.1126/science.3755548. [DOI] [PubMed] [Google Scholar]
  4. Davletov B. A., Südhof T. C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem. 1993 Dec 15;268(35):26386–26390. [PubMed] [Google Scholar]
  5. Dekker L. V., Parker P. J. Regulated binding of the protein kinase C substrate GAP-43 to the V0/C2 region of protein kinase C-delta. J Biol Chem. 1997 May 9;272(19):12747–12753. doi: 10.1074/jbc.272.19.12747. [DOI] [PubMed] [Google Scholar]
  6. Edwards A. S., Newton A. C. Regulation of protein kinase C betaII by its C2 domain. Biochemistry. 1997 Dec 16;36(50):15615–15623. doi: 10.1021/bi9718752. [DOI] [PubMed] [Google Scholar]
  7. Essen L. O., Perisic O., Cheung R., Katan M., Williams R. L. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature. 1996 Apr 18;380(6575):595–602. doi: 10.1038/380595a0. [DOI] [PubMed] [Google Scholar]
  8. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  9. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  10. Hannun Y. A., Loomis C. R., Bell R. M. Protein kinase C activation in mixed micelles. Mechanistic implications of phospholipid, diacylglycerol, and calcium interdependencies. J Biol Chem. 1986 Jun 5;261(16):7184–7190. [PubMed] [Google Scholar]
  11. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  12. Joneson T., White M. A., Wigler M. H., Bar-Sagi D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science. 1996 Feb 9;271(5250):810–812. doi: 10.1126/science.271.5250.810. [DOI] [PubMed] [Google Scholar]
  13. Knopf J. L., Lee M. H., Sultzman L. A., Kriz R. W., Loomis C. R., Hewick R. M., Bell R. M. Cloning and expression of multiple protein kinase C cDNAs. Cell. 1986 Aug 15;46(4):491–502. doi: 10.1016/0092-8674(86)90874-3. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Li C., Ullrich B., Zhang J. Z., Anderson R. G., Brose N., Südhof T. C. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature. 1995 Jun 15;375(6532):594–599. doi: 10.1038/375594a0. [DOI] [PubMed] [Google Scholar]
  17. Mahadevan D., Thanki N., Singh J., McPhie P., Zangrilli D., Wang L. M., Guerrero C., LeVine H., 3rd, Humblet C., Saldanha J. Structural studies on the PH domains of Db1, Sos1, IRS-1, and beta ARK1 and their differential binding to G beta gamma subunits. Biochemistry. 1995 Jul 18;34(28):9111–9117. doi: 10.1021/bi00028a021. [DOI] [PubMed] [Google Scholar]
  18. Mosior M., Epand R. M. Characterization of the calcium-binding site that regulates association of protein kinase C with phospholipid bilayers. J Biol Chem. 1994 May 13;269(19):13798–13805. [PubMed] [Google Scholar]
  19. Nalefski E. A., Falke J. J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 1996 Dec;5(12):2375–2390. doi: 10.1002/pro.5560051201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nalefski E. A., Slazas M. M., Falke J. J. Ca2+-signaling cycle of a membrane-docking C2 domain. Biochemistry. 1997 Oct 7;36(40):12011–12018. doi: 10.1021/bi9717340. [DOI] [PubMed] [Google Scholar]
  21. Newton A. C. Interaction of proteins with lipid headgroups: lessons from protein kinase C. Annu Rev Biophys Biomol Struct. 1993;22:1–25. doi: 10.1146/annurev.bb.22.060193.000245. [DOI] [PubMed] [Google Scholar]
  22. Newton A. C., Koshland D. E., Jr High cooperativity, specificity, and multiplicity in the protein kinase C-lipid interaction. J Biol Chem. 1989 Sep 5;264(25):14909–14915. [PubMed] [Google Scholar]
  23. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995 Apr;9(7):484–496. [PubMed] [Google Scholar]
  24. Ono Y., Kurokawa T., Fujii T., Kawahara K., Igarashi K., Kikkawa U., Ogita K., Nishizuka Y. Two types of complementary DNAs of rat brain protein kinase C. Heterogeneity determined by alternative splicing. FEBS Lett. 1986 Oct 6;206(2):347–352. doi: 10.1016/0014-5793(86)81010-9. [DOI] [PubMed] [Google Scholar]
  25. Ono Y., Kurokawa T., Kawahara K., Nishimura O., Marumoto R., Igarashi K., Sugino Y., Kikkawa U., Ogita K., Nishizuka Y. Cloning of rat brain protein kinase C complementary DNA. FEBS Lett. 1986 Jul 28;203(2):111–115. doi: 10.1016/0014-5793(86)80724-4. [DOI] [PubMed] [Google Scholar]
  26. Parker P. J., Coussens L., Totty N., Rhee L., Young S., Chen E., Stabel S., Waterfield M. D., Ullrich A. The complete primary structure of protein kinase C--the major phorbol ester receptor. Science. 1986 Aug 22;233(4766):853–859. doi: 10.1126/science.3755547. [DOI] [PubMed] [Google Scholar]
  27. Perisic O., Fong S., Lynch D. E., Bycroft M., Williams R. L. Crystal structure of a calcium-phospholipid binding domain from cytosolic phospholipase A2. J Biol Chem. 1998 Jan 16;273(3):1596–1604. doi: 10.1074/jbc.273.3.1596. [DOI] [PubMed] [Google Scholar]
  28. Randriamampita C., Tsien R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993 Aug 26;364(6440):809–814. doi: 10.1038/364809a0. [DOI] [PubMed] [Google Scholar]
  29. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  30. Shao X., Davletov B. A., Sutton R. B., Südhof T. C., Rizo J. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science. 1996 Jul 12;273(5272):248–251. doi: 10.1126/science.273.5272.248. [DOI] [PubMed] [Google Scholar]
  31. Shao X., Li C., Fernandez I., Zhang X., Südhof T. C., Rizo J. Synaptotagmin-syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron. 1997 Jan;18(1):133–142. doi: 10.1016/s0896-6273(01)80052-0. [DOI] [PubMed] [Google Scholar]
  32. Sutton R. B., Davletov B. A., Berghuis A. M., Südhof T. C., Sprang S. R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell. 1995 Mar 24;80(6):929–938. doi: 10.1016/0092-8674(95)90296-1. [DOI] [PubMed] [Google Scholar]
  33. Swairjo M. A., Concha N. O., Kaetzel M. A., Dedman J. R., Seaton B. A. Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat Struct Biol. 1995 Nov;2(11):968–974. doi: 10.1038/nsb1195-968. [DOI] [PubMed] [Google Scholar]
  34. Tanaka M., Herr W. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell. 1990 Feb 9;60(3):375–386. doi: 10.1016/0092-8674(90)90589-7. [DOI] [PubMed] [Google Scholar]
  35. Wigler M., Silverstein S., Lee L. S., Pellicer A., Cheng Y. c., Axel R. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell. 1977 May;11(1):223–232. doi: 10.1016/0092-8674(77)90333-6. [DOI] [PubMed] [Google Scholar]
  36. Zidovetzki R., Lester D. S. The mechanism of activation of protein kinase C: a biophysical perspective. Biochim Biophys Acta. 1992 Apr 7;1134(3):261–272. doi: 10.1016/0167-4889(92)90185-e. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES